Robots designed for space applications, deep sea applications, handling of hazardous material and surgery should ideally be able to handle as many potential faults as possible. This paper provides novel indices for fault tolerance analysis of redundantly actuated parallel robots. Such robots have the potential for higher accuracy, improved stiffness, and higher acceleration compared to similar-sized serial robots. The faults considered are free-swinging joint failures (FSJFs), defined as a software or hardware fault, preventing the administration of actuator torque on a joint. However, for a large range of robots, the proposed indices are applicable also to faults corresponding to the disappearance of a kinematic chain, for example, a breakage. Most existing fault tolerance indices provide a ratio between a robot's performance after the fault and the performance before the fault. In contrast, the indices proposed in this paper provide absolute measures of a robot's performance under the worst-case faults. The proposed indices are based on two recently introduced metrics for motion/force transmission analysis of parallel robots. Their main advantage is their applicability to parallel robots with arbitrary degrees-of–freedom (DOF), along with their intuitive geometric interpretation. The feasibility of the proposed indices is demonstrated through application on a redundantly actuated planar parallel mechanism.

References

1.
Maciejewski
,
A. A.
,
1990
, “
Fault Tolerant Properties of Kinematically Redundant Manipulator
,”
IEEE International Conference on Robotics and Automation (ICRA’90)
, pp.
638
642
.
2.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
,
1996
, “
A Local Measure of Fault Tolerance for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
543
552
.
3.
Lewis
,
C. L.
, and
Maciejewski
,
A. A.
,
1997
, “
Fault Tolerant Operation of Kinematically Redundant Manipulators for Locked Joint Failures
,”
IEEE Trans. Rob. Autom.
,
13
(
4
), pp.
622
629
.
4.
English
,
J. D.
, and
Maciejewski
,
A. A.
,
1998
, “
Fault Tolerance for Kinematically Redundant Manipulators: Anticipating Free-Swinging Joint Failures
,”
IEEE Trans. Rob. Autom.
,
14
(
4
), pp.
566
575
.
5.
Matone
,
R.
, and
Roth
,
B.
,
1999
, “
In-Parallel Manipulators: A Framework on How to Model Actuation Schemes and a Study of Their Effects on Singular Postures
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
2
8
.
6.
English
,
J. D.
, and
Maciejewski
,
A. A.
,
2001
, “
Failure Tolerance Through Active Braking: A Kinematic Approach
,”
Int. J. Rob. Res.
,
20
(
4
), pp.
287
299
.
7.
Zhao
,
J.
,
Zhang
,
K.
, and
Yao
,
X.
,
2006
, “
Study on Fault Tolerant Workspace and Fault Tolerant Planning Algorithm Based on Optimal Initial Position for Two Spatial Coordinating Manipulators
,”
Mech. Mach. Theory
,
41
(
5
), pp.
584
595
.
8.
Tinós
,
R.
,
Terra
,
M. H.
, and
Bergerman
,
M.
,
2007
, “
A Fault Tolerance Framework for Cooperative Robotic Manipulator
,”
Control Eng. Pract.
,
15
(
5
), pp.
615
625
.
9.
O'Brien
,
J. F.
, and
Wen
,
J. T.
,
1999
, “
Redundant Actuation for Improving Kinematic Manipulability
,”
IEEE International Conference on Robotics and Automation
(
ICRA’99
), pp.
1520
1525
.
10.
Notash
,
L.
, and
Huang
,
L.
,
2003
, “
On the Design of Fault Tolerant Parallel Manipulators
,”
Mech. Mach. Theory
,
38
(
1
), pp.
85
101
.
11.
Yi
,
Y.
,
McInroy
,
J. E.
, and
Chen
,
Y.
,
2006
, “
Fault Tolerance of Parallel Manipulators Using Task Space and Kinematic Redundancy
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
1017
1021
.
12.
Marlow
,
K.
,
Isaksson
,
M.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Planar Parallel Mechanisms With Closed-Loop Subchains
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041019
.
13.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
New York
.
14.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
15.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
The Transmissivity and Manipulability of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
137
143
.
16.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
17.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
18.
Xie
,
F.
,
Liu
,
X.-J.
, and
Li
,
J.
,
2014
, “
Performance Indices for Parallel Robots Considering Motion/Force Transmissibility
,”
Intelligent Robotics and Applications
(Lecture Notes in Computer Science), Vol.
8917
,
Springer Berlin
, pp.
35
43
.
19.
Liu
,
X.-J.
,
Chen
,
X.
, and
Nahon
,
M.
,
2014
, “
Motion/Force Constrainability Analysis of Lower-Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031006
.
20.
Liu
,
H.
,
Wang
,
M.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2015
, “
A Dual Space Approach For Force/Motion Transmissibility Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034504
.
21.
Marlow
,
K.
,
Isaksson
,
M.
,
Dai
,
J. S.
, and
Nahavandi
,
S.
,
2016
, “
Motion/Force Transmission Analysis of Parallel Mechanisms With Planar Closed-Loop Sub-Chains
,”
ASME J. Mech. Des.
,
138
(
6
), p.
062302
.
22.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
23.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
IEEE
International Conference on Robotics and Automation (ICRA’01)
, pp.
496
502
.
24.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
25.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), pp.
113
124
.
26.
Liu
,
G. F.
,
Wu
,
Y. L.
,
Wu
,
X. Z.
,
Kuen
,
Y. Y.
, and
Li
,
Z. X.
,
2001
, “
Analysis and Control of Redundant Parallel Manipulators
,”
IEEE
International Conference on Robotics and Automation (ICRA’01)
, pp.
3748
3754
.
27.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
644
651
.
28.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.
29.
Phakatkar
,
H. G.
,
1987
,
A Text Book of Theory of Machines and Mechanisms–I
, 4th ed., Nirali Prakashan, Pune, India.
30.
Wu
,
C.
,
Liu
,
X.-J.
,
Wang
,
L.
, and
Wang
,
J.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
31.
Wang
,
J.
,
Liu
,
X.-J.
, and
Wu
,
C.
,
2009
, “
Optimal Design of a New Spatial 3-DOF Parallel Robot With Respect to a Frame-Free Index
,”
Sci. China, Ser. E: Technol. Sci.
,
52
(
4
), pp.
986
999
.
You do not currently have access to this content.