Assembly variation should be predicted accurately in the design process of a product to ensure the performance of the assembled parts. One important issue in predicting assembly variation is to search propagation paths along which variation accumulates. In this paper, a new searching algorithm of multibranch propagation paths of assembly variation for rigid body assemblies is proposed. First, the concepts of feature set and relation set are proposed to express the information of geometric tolerances and assembly constraints among features. Second, the actual constraint directions of a reference relation considering the precedence level are obtained. Third, the search of multibranch propagation paths is conducted by intersecting the actual constraint directions of different reference relations. Finally, the accuracy and efficiency of the proposed method are validated by comparing with the commercial computer-aided tolerancing (CAT) software package, 3DCS, for predicting assembly variation of the body structure of an aircraft. The outcomes of the paper can treat geometric tolerances, which overcome the drawback of traditional dimension-chain-based methods in predicting assembly variation. It is expected that a synthetic use of the proposed method and the dimension-chain-based methods can provide a computationally efficient substitute for the classical Monte Carlo simulation in predicting assembly variation.

References

1.
Chen
,
H.
,
Jin
,
S.
,
Li
,
Z. M.
, and
Lai
,
X. M.
,
2014
, “
A Comprehensive Study of Three Dimensional Tolerance Analysis Methods
,”
Comput. Aided Des.
,
53
, pp.
1
13
.
2.
Bo
,
C. W.
,
Yang
,
Z. H.
,
Wang
,
L. B.
, and
Chen
,
H. Q.
,
2013
, “
A Comparison of Tolerance Analysis Models for Assembly
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
739
754
.
3.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
4.
Islam
,
M. N.
,
2009
, “
A Dimensioning and Tolerancing Methodology for Concurrent Engineering Applications I: Problem Representation
,”
Int. J. Adv. Manuf. Technol.
,
42
(
9
), pp.
922
939
.
5.
Prisco
,
U.
, and
Giorleo
,
G.
,
2002
, “
Overview of Current CAT Systems
,”
Integr. Comput Aided Eng.
,
9
(
4
), pp.
373
387
.
6.
Islam
,
M. N.
,
2004
, “
Functional Dimensioning and Tolerancing Software for Concurrent Engineering Applications
,”
Comput. Ind.
,
54
(
2
), pp.
169
190
.
7.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2010
, “
Variational Modeling and Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies: Planar and Cylindrical Features
,”
Int. J. Adv. Manuf. Technol.
,
49
(
1–4
), pp.
239
251
.
8.
Sarigecili
,
M. I.
,
Roy
,
U.
, and
Rachuri
,
S.
,
2014
, “
Interpreting the Semantics of GD&T Specifications of a Product for Tolerance Analysis
,”
Comput. Aided Des.
,
47
, pp.
72
84
.
9.
Guo
,
C. Y.
,
Liu
,
J. H.
, and
Jiang
,
K.
,
2016
, “
Efficient Statistical Analysis of Geometric Tolerances Using Unified Error Distribution and an Analytical Variation Model
,”
Int. J. Adv. Manuf. Technol.
,
84
(
1–4
), pp.
347
360
.
10.
Requicha
,
A. A. G.
,
1983
, “
Toward a Theory of Geometric Tolerancing
,”
Int. J. Robot. Res.
,
2
(
4
), pp.
45
60
.
11.
Jayaraman
,
R.
, and
Srinivasan
,
V.
,
1989
, “
Geometric Tolerancing: I. Virtual Boundary Requirements
,”
IBM. J. Res. Dev.
,
33
(
2
), pp.
90
104
.
12.
Wirtz
,
A.
,
1993
, “
Vectorial Tolerancing: a Basic Element for Quality Control
,”
3rd CIRP Conference on Computer Aided Tolerancing
, Cachan, France, Apr., pp.
115
128
.
13.
Clement
,
A.
, and
Bourdet
,
P.
,
1988
, “
A Study of Optimal-Criteria Identification Based on the Small-Displacement Screw Model
,”
CIRP Ann. Manuf. Technol.
,
37
(
1
), pp.
503
506
.
14.
Clement
,
A.
,
Riviere
,
A.
, and
Serre
,
P.
,
1996
, “
A Declarative Information Model for Functional Requirements
,”
Computer-Aided Tolerancing
,
K.
Fumihiko
, ed.,
Springer
,
The Netherlands
, pp.
3
16
.
15.
Davidson
,
J. K.
,
Mujezinovic
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.
16.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation for Design of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031005
.
17.
Wang
,
H. Y.
,
Pramanik
,
N.
,
Roy
,
U.
,
Sudarsan
,
R.
,
Sriram
,
R. D.
, and
Lyons
,
K. W.
,
2006
, “
A Scheme for Mapping Tolerance Specifications to Generalized Deviation Space for Use in Tolerance Synthesis and Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
81
91
.
18.
Turner
,
J. U.
,
Subramaniam
,
S.
, and
Gupta
,
S.
,
1992
, “
Constraint Representation and Reduction in Assembly Modeling and Analysis
,”
IEEE Trans. Rob. Autom.
,
8
(
6
), pp.
741
750
.
19.
Adams
,
J. D.
, and
Whitney
,
D. E.
,
2001
, “
Application of Screw Theory to Constraint Analysis of Mechanical Assemblies Joined by Features
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
26
32
.
20.
Ohwovoriole
,
M.
, and
Roth
,
B.
,
1981
, “
An Extension of Screw Theory
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
725
735
.
21.
Wang
,
N.
, and
Ozsoy
,
T. M.
,
1993
, “
Automatic Generation of Tolerance Chains from Mating Relations Represented in Assembly Models
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
757
761
.
22.
Rikard
,
S.
, and
Hans
,
J.
,
1999
, “
Tolerance Chain Detection by Geometrical Constraint Based Coupling Analysis
,”
J. Eng. Design.
,
10
(
1
), pp.
5
24
.
23.
Wang
,
H.
,
Ning
,
R. X.
, and
Yan
,
Y.
,
2006
, “
Simulated Toleranced CAD Geometrical Model and Automatic Generation of 3D Dimension Chains
,”
Int. J. Adv. Manuf. Technol.
,
29
(
9–10
), pp.
1019
1025
.
24.
Li
,
J. G.
,
Yao
,
Y. X.
, and
Wang
,
P.
,
2014
, “
Assembly Accuracy Prediction Based on CAD Model
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
825
832
.
25.
Xue
,
J. B.
, and
Ji
,
P.
,
2002
, “
Identifying Tolerance Chains With a Surface-Chain Model in Tolerance Charting
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
93
99
.
26.
Hu
,
J.
,
Xiong
,
G. L.
, and
Wu
,
Z.
,
2004
, “
A Variational Geometric Constraints Network for a Tolerance Types Specification
,”
Int. J. Adv. Manuf. Technol.
,
24
(
3–4
), pp.
214
222
.
27.
Gao
,
Z. B.
,
Wang
,
Z. X.
,
Wu
,
Z. J.
, and
Cao
,
Y. L.
,
2015
, “
Study on Generation of 3D Assembly Dimension Chain
,”
Proc. CIRP
,
27
, pp.
163
168
.
28.
Tsai
,
J. C.
, and
Kuo
,
C. H.
,
2012
, “
A Novel Statistical Tolerance Analysis Method for Assembled Parts
,”
Int. J. Prod. Res.
,
50
(
12
), pp.
3498
3513
.
29.
Singh
,
P. K.
,
Jain
,
P. K.
, and
Jain
,
S. C.
,
2009
, “
Important Issues in Tolerance Design of Mechanical Assemblies. Part 1: Tolerance Analysis
,”
Proc. Inst. Mech. Eng. B
,
223
(
10
), pp.
1225
1247
.
You do not currently have access to this content.