This paper presents a tradeoff between shifting design and controlling sampling uncertainty in system reliability-based design optimization (RBDO) using the Bayesian network. The sampling uncertainty is caused by a finite number of samples used in calculating the reliability of a component, and it propagates to the system reliability. A conservative failure probability is utilized to consider sampling uncertainty. In this paper, the sensitivity of a conservative system failure probability is derived with respect to the design change and the number of samples in a component using Bayesian network along with global sensitivity analysis (GSA). In the sensitivity analysis, GSA is used for local sensitivity calculation. The numerical results show that sampling uncertainty can significantly affect the conservative system reliability and needs to be controlled to achieve the desired level of system reliability. Numerical examples show that both shifting design and reducing sampling uncertainty are crucial in the system RBDO.

References

1.
Cadini
,
F.
, and
Gioletta
,
A.
,
2016
, “
A Bayesian Monte Carlo-Based Algorithm for the Estimation of Small Failure Probabilities of Systems Affected by Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
15
27
.
2.
Howard
,
R. A.
,
1988
, “
Uncertainty About Probability: A Decision Analysis Perspective
,”
Risk Anal.
,
8
(
1
), pp.
91
98
.
3.
Mosleh, A., and Bier, V. M., 1996, “
Uncertainty About Probability: A Reconciliation With the Subjectivist Viewpoint
,”
IEEE Trans. on Syst., Man, and Cybern. Part A: Syst. and Hum.
,
26
(3), pp. 303–310.
4.
Reneke
,
J. A.
,
Wiecek
,
M. M.
,
Fadel
,
G. M.
,
Samson
,
S.
, and
Nowak
,
D.
,
2010
, “
Design Under Uncertainty: Balancing Expected Performance and Risk
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111009
.
5.
Hofer
,
E.
,
Kloos
,
M.
,
Krzykacz-Hausmann
,
B.
,
Peschke
,
J.
, and
Woltereck
,
M.
,
2002
, “
An Approximate Epistemic Uncertainty Analysis Approach in the Presence of Epistemic and Aleatory Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
77
(
3
), pp.
229
238
.
6.
Choi
,
J.
,
An
,
D.
, and
Won
,
J.
,
2010
, “
Bayesian Approach for Structural Reliability Analysis and Optimization Using the Kriging Dimension Reduction Method
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051003
.
7.
Nannapaneni
,
S.
, and
Mahadevan
,
S.
,
2016
, “
Reliability Analysis Under Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
155
, pp.
9
20
.
8.
Bae
,
S.
,
Kim
,
N. H.
,
Park
,
C.
, and
Kim
,
Z.
,
2017
, “
Confidence Interval of Bayesian Network and Global Sensitivity Analysis
,”
AIAA J.
,
55
(
11
), pp.
3916
3924
.
9.
Bae
,
S.
,
Kim
,
N. H.
, and
Jang
,
S. G.
,
2018
, “
Reliability-Based Design Optimization Under Sampling Uncertainty: Shifting Design Versus Shaping Uncertainty
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1845
1855
.
10.
Grigoriu
,
M.
,
1982
, “
Methods for Approximate Reliability Analysis
,”
Struct. Saf.
,
1
(
2
), pp.
155
165
.
11.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.
12.
Sheather
,
S. J.
, and
Jones
,
M. C.
,
1991
, “
A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation
,”
J. R. Stat. Soc. Ser. B Stat. Methodol.
,
53
(
3
), pp.
683
690
.
13.
Jensen
,
F. V.
, and
Nielsen
,
T. D.
,
2007
,
Bayesian Networks and Decision Graphs
, Springer Science & Business Media, New York.
14.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2018
, “
Bayesian Network Learning for Data-Driven Design
,”
J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
4
(
4
), p.
041002
.
15.
Liang
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Multidisciplinary Optimization Under Uncertainty Using Bayesian Network
,”
SAE Int. J. Mater. Manuf.
,
9
(
2
), pp. 419–429.
16.
Liang
,
C.
, and
Mahadevan
,
S.
,
2017
, “
Pareto Surface Construction for Multi-Objective Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1865
1882
.
17.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propagation for Robust Design
,”
SAE
Tech. Paper No. 2004-01–0429
.
18.
Fraser, D. A. S., 1958,
Statistics-An Introduction
, John Wiley and Sons, New York, pp. 124–125
19.
Picheny
,
V.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2010
, “
Application of Bootstrap Method in Conservative Estimation of Reliability With Limited Samples
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
205
217
.
20.
Mahadevan
,
S.
,
Zhang
,
R.
, and
Smith
,
N.
,
2001
, “
Bayesian Networks for System Reliability Reassessment
,”
Struct. Saf.
,
23
(
3
), pp.
231
251
.
21.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.
22.
Saltelli
,
A.
,
2004
, “
Global Sensitivity Analysis: An Introduction
,” 4th International Conference on Sensitivity Analysis of Model Output (
SAMO'™04
), Santa Fe, NM, Mar. 8–11.https://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-proceedings.pdf
23.
Jiang
,
Z.
,
Chen
,
W.
, and
German
,
B. J.
,
2016
, “
Multidisciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties
,”
AIAA J.
,
54
(
4
), pp.
1326
1338
.
24.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
25.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Stochastic Sensitivity Analysis and Dynamic Kriging Method
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
26.
Jang
,
S. G.
,
Lee
,
H. N.
, and
Oh
,
J. Y.
,
2014
, “
Performance Modeling of a Pyrotechnically Actuated Pin Puller
,”
Int. J. Aeronaut. Space Sci.
,
15
(
1
), pp.
102
111
.
You do not currently have access to this content.