Abstract

Compliant constant-force mechanisms (CCFMs), which provide a near constant-force output over a range of displacement, can benefit many applications. This work proposes a novel large-stroke CCFM (abbreviated as B2CCFM) that utilizes the second buckling mode of flexible beams. Two general nondimensionalized metrics, one describing the variation of output force and the other describing the operational displacement, are proposed to effectively characterize the performances of various CCFMs. Based on the general metrics, design formulas that can help designers quickly find suitable B2CCFM design for a specific application are obtained. A kinetostatic model for B2CCFM is also provided based on the chained beam constrain model to verify B2CCFM designs. An example accompanied with a prototype is presented to verify this novel CCFM and the effectiveness of the design formulas. The experimental results show that the B2CCFM example outputs a constant-force in a range as large as 45% of the beam length with variation less than 4.7%. The nondimensionalized metrics were demonstrated in comparison of several CCFMs, and the comparison results show the superior performances of B2CCFMs.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
Substantially Constant-Force Exercise Machine
,” US Patent 7,060,012,
June
13
.
3.
Lan
,
C.
, and
Wang
,
J.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
386
391
.
4.
Wang
,
D.
,
Chen
,
J.
, and
Pham
,
H.
,
2013
, “
A Constant-Force Bistable Micromechanism
,”
Sens. Actuators A
,
189
(
2013
), pp.
481
487
. 10.1016/j.sna.2012.10.042
5.
Liu
,
Y
, and
Xu
,
Q.
,
2016
, “
Design of a Compliant Constant Force Gripper Mechanism Based on Buckled Fixed-Guided Beam
,”
IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Paris, France
,
July 18–22
.
6.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Mech. Sci.
,
2
(
2
), pp.
169
174
. 10.5194/ms-2-169-2011
7.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME
,
New York
.
8.
Bossert
,
D.
,
Ly
,
U.
, and
Vagners
,
J.
,
1996
, “
Experimental Evaluation of a Hybrid Position and Force Surface Following Algorithm for Unknown Surfaces
,”
IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
.
9.
Chen
,
Y.
, and
Lan
,
C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
10.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
. 10.1016/j.mechmachtheory.2016.08.009
11.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
12.
Jutte
,
V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load–Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
. 10.1115/1.2936928
13.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
. 10.1115/1.4004543
14.
Pedersen
,
B.
,
Freck
,
A.
, and
Ananthasuresh
,
K.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
. 10.1115/1.2218883
15.
Murphy
,
D.
,
Midha
,
A.
, and
Howell
,
L. L.
,
1994
, “
Methodology for the Design of Compliant Mechanisms Employing Type Synthesis Techniques With Example
,”
ASME Proceedings of the Mechanisms Conference
.
16.
Weight
,
B. L.
,
Mattson
,
A.
,
Magleby
,
P.
, and
Howell
,
L. L.
,
2007
, “
Configuration Selection, Modeling, and Preliminary Testing in Support of Constant Force Electrical Connectors
,”
ASME J. Electron. Packag.
,
29
(
3
), pp.
236
246
. 10.1115/1.2721080
17.
Herder
,
J. L.
, and
Van Den Berg
,
F. P. A.
,
2000
, “
Statically Balanced Compliant Mechanisms (SBCMs), an Example and Prospects
,”
Proceedings of the Design Engineering Technical Conferences and Computer in Engineering Conference
, DETC2000/MECH-14144.
18.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Int. J. Prec. Eng. Manuf.
,
19
(
12
), pp.
1843
1850
. 10.1007/s12541-018-0213-x
19.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Analysis of a 2-DOF Compliant Gripper With Constant-Force Flexure Mechanism
,”
J. Micro-Bio Rob.
,
15
(
1
), pp.
31
42
. 10.1007/s12213-019-00112-4
20.
Kuo
,
Y.
, and
Lan
,
C.
,
2020
, “
A Two-Dimensional Adjustable Constant-Force Mechanism
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063304
. 10.1115/1.4044917
21.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
. 10.1115/1.1333096
22.
Weight
,
B. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2012
, “
Selection of Compliant Constant-Force Mechanisms Based on Stress and Force Criteria
,”
ASME IDETC/CIE2012, DETC2012/MECH-34206
.
23.
Mackay
,
A. B.
,
Smith
,
D. G.
,
Magleby
,
S. P.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2012
, “
Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011008
. 10.1115/1.4004191
24.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
. 10.1115/1.4035084
25.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model (CBCM)
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
. 10.1115/1.4031028
26.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
. 10.1115/1.4041585
27.
Sen
,
S.
,
2013
,
Beam Constraint Model: Generalized Nonlinear Closed-Form Modeling of Beam Flexures for Flexure Mechanism Design
,”
Ph.D. dissertation
,
University of Michigan
,
Ann Arbor, MI
.
28.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
. 10.1115/1.4023558
You do not currently have access to this content.