Abstract

Flat-foldable origami tessellations are periodic geometric designs that can be transformed from an initial configuration into a flat-folded state. There is growing interest in such tessellations, as they have inspired many innovations in various fields of science and engineering, including deployable structures, biomedical devices, robotics, and mechanical metamaterials. Although a range of origami design methods have been developed to generate such fold patterns, some non-trivial periodic variations involve geometric design challenges, the analytical solutions to which are too difficult. To enhance the design methods of such cases, this study first adopts a geometric-graph-theoretic representation of origami tessellations, where the flat-foldability constraints for the boundary vertices are considered. Subsequently, an optimization framework is proposed for developing flat-foldable origami patterns with four-fold (i.e., degree-4) vertices, where the boundaries of the unit fragment are given in advance. A metaheuristic using particle swarm optimization (PSO) is adopted for finding optimal solutions. Several origami patterns are studied to verify the feasibility and effectiveness of the proposed design method. It will be shown that in comparison with the analytical approach and genetic algorithms (GAs), the presented method can find both trivial and non-trivial flat-foldable solutions with considerably less effort and computational cost. Non-trivial flat-foldable patterns show different and interesting folding behaviors and enrich origami design.

References

1.
Gjerde
,
E.
,
2008
,
Origami Tessellations: Awe-Inspiring Geometric Designs
,
AK Peters/CRC Press
,
Boca Raton, FL
.
2.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139–140
(
5
), pp.
1
14
. 10.1016/j.ijsolstr.2017.05.008
3.
Chen
,
Y.
, and
Feng
,
J.
,
2012
, “
Folding of a Type of Deployable Origami Structures
,”
Int. J. Struct. Stab. Dyn.
,
12
(
6
), p.
1250054
. 10.1142/S021945541250054X
4.
Rivas-Adrover
,
E.
,
2018
, “
A New Hybrid Type of Deployable Structure: Origami-Scissor Hinged
,”
J. Int. Assoc. Shell Spatial Struct.
,
59
(
3
), pp.
183
190
. 10.20898/j.iass.2018.197.010
5.
Martínez-Martín
,
F. J.
, and
Thrall
,
A. P.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
(
6
), pp.
158
167
. 10.1016/j.engstruct.2014.03.012
6.
Sorguç
,
A. G.
,
Hagiwara
,
I.
, and
Selcuk
,
S.
,
2009
, “
Origamics in Architecture: A Medium of Inquiry for Design in Architecture
,”
METU J. Fact. Archit.
,
26
(
2
), pp.
235
247
. 10.4305/METU.JFA.2009.2.12
7.
Pesenti
,
M.
,
Masera
,
G.
, and
Fiorito
,
F.
,
2018
, “
Exploration of Adaptive Origami Shading Concepts Through Integrated Dynamic Simulations
,”
J. Archit. Eng.
,
24
(
4
), p.
04018022
. 10.1061/(ASCE)AE.1943-5568.0000323
8.
Pinson
,
M. B.
,
Stern
,
M.
,
Ferrero
,
A. C.
,
Witten
,
T. A.
,
Chen
,
E.
, and
Murugan
,
A.
,
2017
, “
Self-Folding Origami at Any Energy Scale
,”
Nat. Commun.
,
8
, p.
15477
. 10.1038/ncomms15477
9.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
. 10.1007/s11548-017-1545-1
10.
Ishikawa
,
N.
,
Watanabe
,
G.
,
Hirano
,
Y.
,
Inaki
,
N.
,
Kawachi
,
K.
, and
Oda
,
M.
,
2007
, “
Origami Using da Vinci Surgical System
,”
Surg. Endosc.
,
21
(
7
), pp.
1252
1253
. 10.1007/s00464-007-9416-4
11.
Saccà
,
B.
,
Ishitsuka
,
Y.
,
Meyer
,
R.
,
Sprengel
,
A.
,
Schöneweiß
,
E. C.
,
Nienhaus
,
G. U.
, and
Niemeyer
,
C. M.
,
2015
, “
Reversible Reconfiguration of DNA Origami Nanochambers Monitored by Single-Molecule FRET
,”
Angew. Chem., Int. Ed.
,
54
(
12
), pp.
3592
3597
. 10.1002/anie.201408941
12.
Brittain
,
S. T.
,
Schueller
,
O. J.
,
Wu
,
H.
,
Whitesides
,
S.
, and
Whitesides
,
G. M.
,
2001
, “
Microorigami: Fabrication of Small, Three-Dimensional, Metallic Structures
,”
J. Phys. Chem. B
,
105
(
2
), pp.
347
350
. 10.1021/jp002556e
13.
Paez
,
L.
,
Agarwal
,
G.
, and
Paik
,
J.
,
2016
, “
Design and Analysis of a Soft Pneumatic Actuator With Origami Shell Reinforcement
,”
Soft Robot.
,
3
(
3
), pp.
109
119
. 10.1089/soro.2016.0023
14.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
. 10.1088/1361-665X/aa721e
15.
Sareh
,
P.
,
Chermprayong
,
P.
,
Emmanuelli
,
M.
,
Nadeem
,
H.
, and
Kovac
,
M.
,
2018
, “
Rotorigami: A Rotary Origami Protective System for Robotic Rotorcraft
,”
Sci. Robot.
,
3
(
22
), p.
eaah5228
. 10.1126/scirobotics.aah5228
16.
Nagpal
,
R.
,
2001
,
Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
17.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Robot. Res.
,
27
(
5
), pp.
613
627
. 10.1177/0278364908090235
18.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
. 10.1002/adfm.201102978
19.
Fuchi
,
K.
,
Buskohl
,
P. R.
,
Bazzan
,
G.
,
Durstock
,
M. F.
,
Reich
,
G. W.
,
Vaia
,
R. A.
, and
Joo
,
J. J.
,
2015
, “
Origami Actuator Design and Networking Through Crease Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
9
), p.
091401
. 10.1115/1.4030876
20.
Silverberg
,
J. L.
,
Jun-Hee
,
N.
,
Evans
,
A. A.
,
Bin
,
L.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Itai
,
C.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
. 10.1038/nmat4232
21.
Yang
,
J.
, and
Yasuda
,
H.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson’s Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
. 10.1103/PhysRevLett.114.185502
22.
Fang
,
H.
,
Chu
,
S. C. A.
,
Xia
,
Y.
, and
Wang
,
K. W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
. 10.1002/adma.201706311
23.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), pp.
325
329
. 10.1103/physrevlett.110.215501
24.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. USA
,
115
(
9
), pp.
2032
2037
. 10.1073/pnas.1720171115
25.
Zhao
,
Z.
,
Kuang
,
X.
,
Wu
,
J.
,
Zhang
,
Q.
,
Paulino
,
G. H.
,
Qi
,
H. J.
, and
Fang
,
D.
,
2018
, “
3D Printing of Complex Origami Assemblages for Reconfigurable Structures
,”
Soft Matter
,
14
(
39
), pp.
8051
8059
. 10.1039/C8SM01341A
26.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME Int. J. C—Mech. Syst. Mach. Elem. Manuf.
,
45
(
1
), pp.
364
370
. 10.1299/jsmec.45.364
27.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient art
,
AK Peters/CRC Press
,
Boca Raton, FL
.
28.
Lang
,
R. J.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
29.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
New York
.
30.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K. W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
. 10.1002/adma.201805282
31.
Chen
,
Y.
,
Yan
,
J.
, and
Feng
,
J.
,
2019
, “
Geometric and Kinematic Analyses and Novel Characteristics of Origami-Inspired Structures
,”
Symmetry
,
11
(
9
), p.
1101
. 10.3390/sym11091101
32.
Belcastro
,
S. M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
PII S0024-3795(01)00608-5
), pp.
273
282
. 10.1016/S0024-3795(01)00608-5
33.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
162
), pp.
173
179
.
34.
Zhou
,
X.
,
Wang
,
H.
, and
Zhong
,
Y.
,
2015
, “
Design of Three-Dimensional Origami Structures Based on a Vertex Approach
,”
Proc. Royal Soc. A
,
471
(
2181
), p.
20150407
. 10.1098/rspa.2015.0407
35.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
. 10.1115/1.4025372
36.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
37.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031001
. 10.1115/1.4031458
38.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
. 10.1115/1.4025381
39.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
. 10.1115/1.4025821
40.
He
,
Z.
, and
Guest
,
S. D.
,
2019
, “
On Rigid Origami I: Piecewise-Planar Paper With Straight-Line Creases
,”
Proc. R. Soc. A
,
475
(
2232
), p.
20190215
. 10.1098/rspa.2019.0215
41.
Zimmermann
,
L.
, and
Stanković
,
T.
,
2020
, “
Rigid and Flat Foldability of a Degree-Four Vertex in Origami
,”
ASME J. Mech. Robot.
,
12
(
1
), p.
011004
. 10.1115/1.4044737
42.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
. 10.1115/1.4025384
43.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
. 10.1088/0964-1726/24/8/085001
44.
Sareh
,
P.
,
2014
,
Symmetric Descendants of the Miura-ori
,
University of Cambridge
,
UK
.
45.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
A Framework for the Symmetric Generalisation of the Miura-ori
,”
Int. J. Space Struct.
,
30
(
2
), pp.
141
152
. 10.1260/0266-3511.30.2.141
46.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
J. Mech. Des.
,
141
(
9
), p.
091402
. 10.1115/1.4042791
47.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
. 10.1016/j.matdes.2019.108128
48.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
. 10.1016/j.compstruc.2017.06.006
49.
McAdams
,
D. A.
, and
Li
,
W.
,
2014
, “
A Novel Method to Design and Optimize Flat-Foldable Origami Structures Through a Genetic Algorithm
,”
J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031008
. 10.1115/1.4026509
50.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congressus Numerantium
,
100
, pp.
215
224
.
51.
Kawasaki
,
T.
,
1991
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Proceedings of the First International Meeting of Origami Science and Technology
,
Ferrara, Italy
, pp.
229
237
.
52.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Non-Isomorphic Symmetric Descendants of the Miura-ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085002
. 10.1088/0964-1726/24/8/085002
53.
Sareh
,
P.
, and
Guest
,
S. D.
,
2014
, “
Designing Symmetric Derivatives of the Miura-ori
,”
Adv. Archit. Geom.
, pp.
233
241
. 10.1007/978-3-319-11418-7_15
54.
Chen
,
Y.
,
Yan
,
J.
,
Sareh
,
P.
, and
Feng
,
J.
,
2019
, “
Nodal Flexibility and Kinematic Indeterminacy Analyses of Symmetric Tensegrity Structures Using Orbits of Nodes
,”
Int. J. Mech. Sci.
,
155
, pp.
41
49
. 10.1016/j.ijmecsci.2019.02.021
55.
Chen
,
Y.
,
Yan
,
J.
, and
Feng
,
J.
,
2019
, “
Stiffness Contributions of Tension Structures Evaluated From the Levels of Components and Symmetry Subspaces
,”
Mech. Res. Commun.
,
100
, p.
103401
. 10.1016/j.mechrescom.2019.103401
56.
Sareh
,
P.
, and
Guest
,
S. D.
,
2012
, “
Tessellating Variations on the Miura Fold Pattern
,”
IASS-APCS Symposium
,
Seoul, South Korea
,
May 21–24
.
57.
Chen
,
Y.
, and
Feng
,
J.
,
2016
, “
Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products
,”
J. Struct. Eng.
,
142
(
9
), p.
04016051
. 10.1061/(ASCE)ST.1943-541X.0001512
58.
Eberhart
,
R. C.
,
Shi
,
Y.
, and
Kennedy
,
J.
,
2001
,
Swarm Intelligence
,
Elsevier
,
New York
.
59.
Kaveh
,
A.
, and
Zolghadr
,
A.
,
2014
, “
Democratic PSO for Truss Layout and Size Optimization With Frequency Constraints
,”
Comput. Struct.
,
130
, pp.
10
21
. 10.1016/j.compstruc.2013.09.002
60.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization (PSO)
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, Australia
, pp.
1942
1948
.
61.
Acharyya
,
S. K.
, and
Mandal
,
M.
,
2009
, “
Performance of EAs for Four-Bar Linkage Synthesis
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1784
1794
. 10.1016/j.mechmachtheory.2009.03.003
62.
Chen
,
Y.
,
Yan
,
J.
,
Sareh
,
P.
, and
Feng
,
J.
,
2020
, “
Feasible Prestress Modes for Cable-Strut Structures With Multiple Self-Stress States Using Particle Swarm Optimization
,”
J. Comput. Civil Eng.
,
34
(
3
), p.
04020003
. 10.1061/(ASCE)CP.1943-5487.0000882
63.
Ghassaei
,
A.
,
Demaine
,
E. D.
, and
Gershenfeld
,
N.
,
2018
, “
Fast, Interactive Origami Simulation Using GPU Computation
,”
7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 5–7
.
You do not currently have access to this content.