Abstract

A multifidelity surrogate (MFS) model is a data fusion method for the enhanced prediction of less intensively sampled primary variables of interest (i.e., high-fidelity (HF) samples) with the assistance of intensively sampled auxiliary variables (i.e., low-fidelity (LF) samples). In this article, an MFS model based on the gradient-enhanced radial basis function, termed gradient-enhanced multifidelity surrogate based on the radial basis function (GEMFS-RBF), is proposed to establish a mapping relationship between HF and LF samples. To identify the scaling factor and the undetermined coefficients in GEMFS-RBF, an expanded correlation matrix is constructed by considering the correlations between the acquired samples, the correlations between the gradients, and the correlations between the samples and their corresponding gradients. To evaluate the prediction accuracy of the GEMFS-RBF model, it is compared with the co-Kriging model, multifidelity surrogate based on the radial basis function (MFS-RBF) model, and two single-fidelity surrogate models. The influences of key factors (i.e., the correlations between the HF and LF functions, the subordinations between the sample sets) and the effect of the cost ratio on the performance of GEMFS-RBF are also investigated. It is observed that GEMFS-RBF presents a more acceptable accuracy rate and is less sensitive to the aforementioned factors than the other benchmark models in most cases in this article, which illustrates the practicability and robustness of the proposed GEMFS-RBF model.

References

1.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
2.
Sóbester
,
A.
,
Leary
,
S. J.
, and
Keane
,
A. J.
,
2005
, “
On the Design of Optimization Strategies Based on Global Response Surface Approximation Models
,”
J. Glob. Optim.
,
33
(
1
), pp.
31
59
.
3.
Vavalle
,
A.
, and
Qin
,
N.
,
2007
, “
Iterative Response Surface Based Optimization Scheme for Transonic Airfoil Design
,”
J. Aircr.
,
44
(
2
), pp.
365
376
.
4.
Liu
,
K.
,
Detwiler
,
D.
, and
Tovar
,
A.
,
2017
, “
Optimal Design of Nonlinear Multimaterial Structures for Crashworthiness Using Cluster Analysis
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101401
.
5.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
6.
Han
,
Z. H.
,
Görtz
,
S.
, and
Zimmermann
,
R.
,
2013
, “
Improving Variable-Fidelity Surrogate Modeling via Gradient-Enhanced Kriging and a Generalized Hybrid Bridge Function
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
177
189
.
7.
Song
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Gao
,
W.
, and
Li
,
Q.
,
2013
, “
Crashworthiness Optimization of Foam-Filled Tapered Thin-Walled Structure Using Multiple Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
47
(
2
), pp.
221
231
.
8.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
,
Wei
,
L.
, and
Shao
,
X.
,
2017
, “
Adaptive Radial-Basis-Function-Based Multifidelity Metamodeling for Expensive Black-Box Problems
,”
AIAA J.
,
55
(
7
), pp.
2424
2436
.
9.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
Metamodeling for High Dimensional Design Problems by Multi-Fidelity Simulations
,”
Struct. Multidiscipl. Optim.
,
56
(
1
), pp.
151
166
.
10.
Durantin
,
C.
,
Rouxel
,
J.
,
Désidéri
,
J. A.
, and
Glière
,
A.
,
2017
, “
Multifidelity Surrogate Modeling Based on Radial Basis Functions
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
1061
1075
.
11.
Shi
,
R.
,
Liu
,
L.
,
Long
,
T.
,
Wu
,
Y.
, and
Gary Wang
,
G.
,
2020
, “
Multi-Fidelity Modeling and Adaptive co-Kriging-Based Optimization for All-Electric Geostationary Orbit Satellite Systems
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021404
.
12.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Hoboken, NJ
.
13.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
–380.
14.
Hevesi
,
J. A.
,
Flint
,
A. L.
, and
Istok
,
J. D.
,
1992
, “
Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps
,”
J. Appl. Meteorol.
,
31
(
7
), pp.
677
688
.
15.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
16.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
17.
Han
,
Z. H.
,
Zimmermann
,
R.
, and
Goretz
,
S.
,
2010
, “
A new Cokriging Method for Variable-Fidelity Surrogate Modeling of Aerodynamic Data
,”
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
, p.
1225
.
18.
Zhou
,
Q.
,
Wu
,
Y.
,
Guo
,
Z.
,
Hu
,
J.
, and
Jin
,
P.
,
2020
, “
A Generalized Hierarchical Co-Kriging Model for Multi-Fidelity Data Fusion
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1885
1904
.
19.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.
20.
Li
,
X.
,
Gao
,
W.
,
Gu
,
L.
,
Gong
,
C.
,
Jing
,
Z.
, and
Su
,
H.
,
2017
, “
A Cooperative Radial Basis Function Method for Variable-Fidelity Surrogate Modeling
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
1077
1092
.
21.
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
,
Cao
,
L.
, and
Wan
,
L.
,
2017
, “
A Variable Fidelity Information Fusion Method Based on Radial Basis Function
,”
Adv. Eng. Inform.
,
32
, pp.
26
39
.
22.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S. K.
,
Jiang
,
P.
,
Shao
,
X.
, and
Hu
,
J.
,
2017
, “
A Sequential Multi-Fidelity Metamodeling Approach for Data Regression
,”
Knowl. Based Syst.
,
134
, pp.
199
212
.
23.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
965
981
.
24.
Han
,
Z. H.
,
Zhang
,
Y.
,
Song
,
C. X.
, and
Zhang
,
K. S.
,
2017
, “
Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization
,”
AIAA J.
,
55
(
12
), pp.
4330
4346
.
25.
Lewis
,
R.
,
1998
, “
Using Sensitivity Information in the Construction of Kriging Models for Design Optimization
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
St. Louis, MO
,
Sept. 2–4
, p.
4799
.
26.
Chung
,
H. S.
, and
Alonso
,
J.
,
2002
, “
Design of a Low-Boom Supersonic Business Jet Using Cokriging Approximation Models
,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
,
Sept. 4–6
, p.
5598
.
27.
Liu
,
W.
,
2003
, “
Development of Gradient-Enhanced Kriging Approximations for Multidisciplinary Design Optimization
,”
Ph.D. thesis
,
University of Notre Dame
,
Notre Dame, IN
.
28.
Laurenceau
,
J.
, and
Sagaut
,
P.
,
2008
, “
Building Efficient Response Surfaces of Aerodynamic Functions With Kriging and Cokriging
,”
AIAA J.
,
46
(
2
), pp.
498
507
.
29.
Ong
,
Y. S.
,
Lum
,
K. Y.
, and
Nair
,
P. B.
,
2008
, “
Hybrid Evolutionary Algorithm With Hermite Radial Basis Function Interpolants for Computationally Expensive Adjoint Solvers
,”
Comput. Optim. Appl.
,
39
(
1
), pp.
97
119
.
30.
Lázaro
,
M.
,
Santamaría
,
I.
,
Pérez-Cruz
,
F.
, and
Artés-Rodríguez
,
A.
,
2005
, “
Support Vector Regression for the Simultaneous Learning of a Multivariate Function and Its Derivatives
,”
Neurocomputing
,
69
(
1–3
), pp.
42
61
.
31.
Jayadeva
,
K. R.
, and
Chandra
,
S.
,
2008
, “
Regularized Least Squares Support Vector Regression for the Simultaneous Learning of a Function and Its Derivatives
,”
Inf. Sci.
,
178
(
17
), pp.
3402
3414
.
32.
Deng
,
Y.
,
2020
, “
Multifidelity Data Fusion via Gradient-Enhanced Gaussian Process Regression
,”
Commun. Comput. Phys.
,
28
(
5
), pp.
1812
1837
.
33.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-fidelity Scale Factor Improves Bayesian Multi-Fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
399
414
.
34.
Petersen
,
K. B.
, and
Pedersen
,
M. S.
,
2008
,
The Matrix Cookbook
, Vol.
7
,
Technical University of Denmark
, p.
510
.
35.
Viana
FA
,
2010
, “SURROGATES Toolbox User’s Guide, Version 2.1,” http://sites.google.com/site/felipeacviana/surrogatestoolbox
36.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
37.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.
38.
Mairaj
,
A.
,
Al Bataineh
,
A.
,
Kaur
,
D.
, and
Javaid
,
A.
,
2019
, “
Identifying the Optimal Solutions of Bohachevsky Test Function Using Swarming Algorithms
,”
Proceedings on the International Conference on Artificial Intelligence (ICAI)
,
Las vegas, NV
,
July 29–Aug. 1
, pp.
109
115
.
39.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
40.
Picheny
,
V.
,
Wagner
,
T.
, and
Ginsbourger
,
D.
,
2013
, “
A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
607
626
.
41.
Toal
,
D. J.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
51
(
6
), pp.
1223
1245
.
42.
Reuther
,
J.
,
Jameson
,
A.
,
Farmer
,
J.
,
Martinelli
,
L.
, and
Saunders
,
D.
,
1996
, “
Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation
,”
34th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 15–18
, p.
94
.
43.
Anderson
,
W. K.
, and
Venkatakrishnan
,
V.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Grids With a Continuous Adjoint Formulation
,”
Comput. Fluids
,
28
(
4–5
), pp.
443
480
.
44.
Brezillon
,
J.
, and
Gauger
,
N. R.
,
2004
, “
2D and 3D Aerodynamic Shape Optimisation Using the Adjoint Approach
,”
Aerosp. Sci. Technol.
,
8
(
8
), pp.
715
727
.
45.
Dwight
,
R. P.
, and
Brezillon
,
J.
,
2006
, “
Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization
,”
AIAA J.
,
44
(
12
), pp.
3022
3031
.
46.
Han
,
Z.
,
2012
, “
Improving Adjoint-Based Aerodynamic Optimization via Gradient-Enhanced Kriging
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
670
.
47.
Liu
,
J.
, and
Ma
,
Y.
,
2017
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
.
48.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2018
, “
An Optimum Design Method for a Thermal-Fluid Device Incorporating Multiobjective Topology Optimization With an Adaptive Weighting Scheme
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031402
.
49.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
50.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2020
, “
A Novel Framework for Simultaneous Topology and Sizing Optimization of Complex, Multi-Domain Systems-of-Systems
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091701
.
51.
Sharpe
,
C.
, and
Seepersad
,
C. C.
,
2021
, “
Lattice Structure Optimization With Orientation-Dependent Material Properties
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091708
.
52.
Owen
,
S. J.
,
Clark
,
B. W.
,
Melander
,
D. J.
,
Brewer
,
M.
,
Shepherd
,
J. F.
,
Merkley
,
K.
, and
Morris
,
R.
,
2008
, “
An Immersive Topology Environment for Meshing
,”
Proceedings of the 16th International Meshing Roundtable
,
Springer
,
Berlin/Heidelberg
, pp.
553
577
.
53.
Song
,
X.
,
Pickert
,
V.
,
Ji
,
B.
,
Naayagi
,
R. T.
,
Wang
,
C.
, and
Yerasimou
,
Y.
,
2017
, “
Questionnaire-Based Discussion of Finite Element Multiphysics Simulation Software in Power Electronics
,”
IEEE Trans. Power Electron.
,
33
(
8
), pp.
7010
7020
.
You do not currently have access to this content.