Abstract

Multifidelity optimization leverages the fast run times of low-fidelity models with the accuracy of high-fidelity models (HFMs), in order to conserve computing resources while still reaching optimal solutions. This work focuses on the multifidelity multidisciplinary optimization of an aircraft system model with finite element analysis and computational fluid dynamics simulations in the loop. A two-step filtering method is used where a lower fidelity model is optimized, and then the solution is used as a starting point for a higher-fidelity optimization routine. By starting the high-fidelity routine at a nearly optimal region of the design space, the computing resources required for optimization are expected to decrease when using local algorithms. Results show that, when using surrogates for the lower fidelity models, the multifidelity workflows save statistically significant amounts of time over optimizing the original HFM alone. However, the impact on solution quality varies depending on the model behavior and optimization algorithm.

References

References
1.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N.-H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-fidelity Models
,”
preprint arXiv:1609.07196
.
2.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come-or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, British Columbia, Canada
,
Sept. 10–12
, p.
5802
.
3.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
. 10.1137/16M1082469
4.
Goldsmith
,
M.
,
Sankar
,
B.
,
Haftka
,
R.
, and
Goldberg
,
R.
,
2011
, “
Effects of Microstructural Variability on the Mechanical Properties of Ceramic Matrix Composites
,”
American Society for Composites 26th Technical Conference
,
Montreal, Quebec, Canada
,
Sept. 26–28
, pp.
1020
1038
.
5.
Anselma
,
P.
,
Niutta
,
C. B.
,
Mainini
,
L.
, and
Belingardi
,
G.
,
2020
, “
Multidisciplinary Design Optimization for Hybrid Electric Vehicles: Component Sizing and Multi-fidelity Frontal Crashworthiness
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
2149
2166
. 10.1007/s00158-020-02603-6
6.
Huang
,
L.
,
Gao
,
Z.
, and
Zhang
,
D.
,
2013
, “
Research on Multi-fidelity Aerodynamic Optimization Methods
,”
Chin. J. Aeronaut.
,
26
(
2
), pp.
279
286
. 10.1016/j.cja.2013.02.004
7.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
. 10.1093/biomet/87.1.1
8.
Leifsson
,
L.
, and
Koziel
,
S.
,
2015
, “
Aerodynamic Shape Optimization by Variable-Fidelity Computational Fluid Dynamics Models: A Review of Recent Progress
,”
J. Comput. Sci.
,
10
,
45
54
. 10.1016/j.jocs.2015.01.003
9.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
. 10.1146/annurev.fl.25.010193.002543
10.
Lucia
,
D. J.
,
Beran
,
P. S.
, and
Silva
,
W. A.
,
2004
, “
Reduced-Order Modeling: New Approaches for Computational Physics
,”
Prog. Aerosp. Sci.
,
40
(
1–2
), pp.
51
117
. 10.1016/j.paerosci.2003.12.001
11.
Belben
,
J.
,
2013
, “
Enabling Rapid Conceptual Design Using Geometry-Based Multi-fidelity Models in VSP
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Grapevine, TX
,
Jan. 7–10
, p.
328
.
12.
Wang
,
G. G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
415
426
.
13.
Frazier
,
P. I.
,
2018
, “
A Tutorial on Bayesian Optimization
,”
preprint arXiv:1807.02811
.
14.
Fidkowski
,
K.
,
2014
, “
Quantifying Uncertainties in Radiation Hydrodynamics Models
,”
Ann. Arbor
,
1001
, p.
48109
.
15.
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
,
2001
, “
Approximation and Model Management in Aerodynamic Optimization With Variable-Fidelity Models
,”
J. Aircraft
,
38
(
6
), pp.
1093
1101
. 10.2514/2.2877
16.
Zhonghua
,
H.
,
Chenzhou
,
X.
,
Zhang
,
L.
,
Zhang
,
Y.
,
Zhang
,
K.
, and
Wenping
,
S.
,
2019
, “
Efficient Aerodynamic Shape Optimization Using Variable-Fidelity Surrogate Models and Multilevel Computational Grids
,”
Chin. J. Aeronaut.
,
33
(
1
), pp.
31
47
.
17.
Brooks
,
C. J.
,
Forrester
,
A.
,
Keane
,
A.
, and
Shahpar
,
S.
,
2011
, “
Multi-fidelity Design Optimisation of a Transonic Compressor Rotor
,”
9th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
,
Istanbul, Turkey
,
Mar. 21–25
.
18.
Jonsson
,
E.
,
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
, “
Computational Fluid Dynamic Analysis and Shape Optimization of Trawl-Doors
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Grapevine, TX
,
Jan. 7–10
, p.
232
.
19.
March
,
A.
,
Willcox
,
K.
, and
Wang
,
Q.
,
2011
, “
Gradient-Based Multifidelity Optimisation for Aircraft Design Using Bayesian Model Calibration
,”
Aeronaut. J.
,
115
(
1174
), pp.
729
738
. 10.1017/S0001924000006473
20.
Sun
,
G.
,
Li
,
G.
,
Stone
,
M.
, and
Li
,
Q.
,
2010
, “
A Two-Stage Multi-fidelity Optimization Procedure for Honeycomb-Type Cellular Materials
,”
Comput. Mater. Sci.
,
49
(
3
), pp.
500
511
. 10.1016/j.commatsci.2010.05.041
21.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
22.
Jin
,
Y.
,
2011
, “
Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges
,”
Swarm Evol. Comput.
,
1
(
2
), pp.
61
70
. 10.1016/j.swevo.2011.05.001
23.
Ray
,
T.
,
Isaacs
,
A.
, and
Smith
,
W.
,
2009
, “Surrogate Assisted Evolutionary Algorithm for Multi-Objective Optimization,”
Multi-Objective Optimization: Techniques and Applications in Chemical Engineering (With CD-ROM)
,
G. P.
Rangaiah
, ed.,
World Scientific
,
Singapore
, pp.
131
151
.
24.
Odeh
,
I. O.
,
McBratney
,
A.
, and
Chittleborough
,
D.
,
1995
, “
Further Results on Prediction of Soil Properties From Terrain Attributes: Heterotopic Cokriging and Regression-Kriging
,”
Geoderma
,
67
(
3–4
), pp.
215
226
. 10.1016/0016-7061(95)00007-B
25.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
26.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives
,”
AIAA J.
,
50
(
5
), pp.
1079
1089
. 10.2514/1.J051125
27.
Poloczek
,
M.
,
Wang
,
J.
, and
Frazier
,
P.
,
2017
, “
Multi-Information Source Optimization
,”
31st Conference on Neural Information Processing Systems
, Long Beach, CA
,
Dec. 4–9
, pp.
4288
4298
.
28.
Unal
,
M.
,
Miller
,
S. W.
,
Chhabra
,
J. P.
,
Warn
,
G. P.
,
Yukish
,
M. A.
, and
Simpson
,
T. W.
,
2017
, “
A Sequential Decision Process for the System-Level Design of Structural Frames
,”
Struct. Multidiscipl. Optim.
,
56
(
5
), pp.
991
1011
. 10.1007/s00158-017-1697-1
29.
Christen
,
J. A.
, and
Fox
,
C.
,
2005
, “
Markov Chain Monte Carlo Using an Approximation
,”
J. Comput. Graph. Stat.
,
14
(
4
), pp.
795
810
. 10.1198/106186005X76983
30.
Réthoré
,
P.-E.
,
Fuglsang
,
P.
,
Larsen
,
G. C.
,
Buhl
,
T.
,
Larsen
,
T. J.
, and
Madsen
,
H. A.
,
2014
, “
Topfarm: Multi-Fidelity Optimization of Wind Farms
,”
Wind Energy
,
17
(
12
), pp.
1797
1816
. 10.1002/we.1667
31.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
32.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
. 10.1007/BF01197554
33.
Chell
,
B. W.
,
Hoffenson
,
S.
, and
Blackburn
,
M. R.
,
2019
, “
A Comparison of Multidisciplinary Design Optimization Architectures With an Aircraft Case Study
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0700
.
34.
Chiba
,
K.
,
Obayashi
,
S.
,
Nakahashi
,
K.
, and
Morino
,
H.
,
2005
, “
High-Fidelity Multidisciplinary Design Optimization of Wing Shape for Regional Jet Aircraft
,”
International Conference on Evolutionary Multi-Criterion Optimization
,
Guanajuato, Mexico
,
Mar. 9–11
,
Springer
, pp.
621
635
.
35.
Choi
,
S.
,
Alonso
,
J. J.
,
Kroo
,
I. M.
, and
Wintzer
,
M.
,
2008
, “
Multifidelity Design Optimization of Low-Boom Supersonic Jets
,”
J. Aircraft
,
45
(
1
), pp.
106
118
. 10.2514/1.28948
36.
Nguyen
,
N.-V.
,
Choi
,
S.-M.
,
Kim
,
W.-S.
,
Lee
,
J.-W.
,
Kim
,
S.
,
Neufeld
,
D.
, and
Byun
,
Y.-H.
,
2013
, “
Multidisciplinary Unmanned Combat Air Vehicle System Design Using Multi-Fidelity Model
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
200
210
. 10.1016/j.ast.2012.04.004
37.
Joly
,
M. M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2014
, “
Integrated Multifidelity, Multidisciplinary Evolutionary Design Optimization of Counterrotating Compressors
,”
Int. Comput. Aided Eng.
,
21
(
3
), pp.
249
261
. 10.3233/ICA-140463
38.
Wang
,
X.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2018
, “
Multidisciplinary and Multifidelity Design Optimization of Electric Vehicle Battery Thermal Management System
,”
ASME J. Mech. Des.
,
140
(
9
), p.
094501
. https://doi.org/10.1115/1.4040484
39.
Yong
,
H. K.
,
Wang
,
L.
,
Toal
,
D. J.
,
Keane
,
A. J.
, and
Stanley
,
F.
,
2019
, “
Multi-Fidelity Kriging-Assisted Structural Optimization of Whole Engine Models Employing Medial Meshes
,”
Struct. Multidiscipl. Optim.
,
60
(
3
), pp.
1209
1226
. 10.1007/s00158-019-02242-6
40.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Constrained Multifidelity Optimization Using Model Calibration
,”
Struct. Multidiscipl. Optim.
,
46
(
1
), pp.
93
109
. 10.1007/s00158-011-0749-1
41.
Hahn
,
A.
,
2010
, “
Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft Design
,”
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–10
, p.
657
.
42.
Shevell
,
R. S.
, and
Shevell
,
R. S.
,
1989
,
Fundamentals of Flight
, Vol.
2
,
Prentice Hall
,
Englewood Cliffs, NJ
.
43.
Miranda
,
L. R.
,
Elliot
,
R. D.
, and
Baker
,
W. M.
,
1977
, “
A Generalized Vortex Lattice Method for Subsonic and Supersonic Flow Applications
,”
Technical Report, National Aeronautics and Space Administration
.
44.
Kundu
,
A. K.
,
2010
,
Aircraft Design
, Vol.
27
,
Cambridge University Press
,
Cambridge
.
45.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
46.
Weisberg
,
S.
,
2005
,
Applied Linear Regression
, Vol.
528
,
John Wiley & Sons
,
Minneapolis, MN
.
47.
Cramer
,
E. J.
,
Dennis
,
Jr
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
. 10.1137/0804044
48.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numer.
,
4
,
1
51
. 10.1017/S0962492900002518
49.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
. 10.1093/comjnl/7.4.308
50.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
. 10.1137/S1052623496303470
51.
D’Errico
,
J.
,
2020
, “
fminsearchbnd, fminsearchcon. MATLAB Central File Exchange
,” https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon Accessed May 28, 2020.
52.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial
,”
Stat. Comput.
,
4
(
2
), pp.
65
85
. 10.1007/BF00175354
53.
Conn
,
A.
,
Gould
,
N.
, and
Toint
,
P.
,
1997
, “
A Globally Convergent Lagrangian Barrier Algorithm for Optimization With General Inequality Constraints and Simple Bounds
,”
Math. Comput.
,
66
(
217
), pp.
261
288
. 10.1090/S0025-5718-97-00777-1
54.
MATLAB Global Optimization Toolbox
,
2020
,
Matlab Global Optimization Toolbox
,
The MathWorks
,
Natick, MA
.
55.
Kan
,
A. R.
, and
Timmer
,
G. T.
,
1987
, “
Stochastic Global Optimization Methods Part I: Clustering Methods
,”
Math. Program.
,
39
(
1
), pp.
27
56
. 10.1007/BF02592070
56.
Rinnooy Kan
,
A.
, and
Timmer
,
G.
,
1987
, “
Stochastic Global Optimization Methods Part II: Multi Level Methods
,”
Math. Program.: Ser. A and B
,
39
(
1
), pp.
57
78
. 10.1007/BF02592071
57.
Martins
,
J.
,
2020
, “
Perspectives on Aerodynamic Design Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p. 0043.
You do not currently have access to this content.