Abstract

A dynamically balanced robotic manipulator does not exert forces or moments onto the base on which it is fixed; this can be important for the performance of parallel robots as they are able to move at very high speeds, albeit usually have a reduced workspace. In recent years, kinematically redundant architectures have been proposed to mitigate the workspace limitations of parallel manipulators and increase their rotational capabilities; however, dynamically balanced versions of these architectures have not yet been presented. In this paper, a dynamically balanced kinematically redundant planar parallel architecture is introduced. The manipulator is composed of parallelogram linkages that reduce the number of counter rotary elements required to moment balance the mechanism. The balancing conditions are derived, and the balancing parameters are optimized using Lagrange multipliers, such that the total mass and inertia of the system is minimized. The elimination of the shaking forces and moments is then verified via a simulation in the multi-body dynamic simulation software msc adams.

References

1.
Lowen
,
G.
, and
Berkof
,
R.
,
1968
, “
Survey of Investigations Into the Balancing of Linkages
,”
J. Mech.
,
3
(
4
), pp.
221
231
. 10.1016/0022-2569(68)90001-3
2.
Berkof
,
R.
, and
Lowen
,
G.
,
1969
, “
A New Method for Completely Force Balancing Simple Linkages
,”
ASME J. Eng. Indus.
,
91
(
1
), pp.
21
26
. 10.1115/1.3591524
3.
Berkof
,
R.
, and
Lowen
,
G.
,
1971
, “
Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages
,”
ASME J. Eng. Indus.
,
93
(
1
), pp.
53
60
. 10.1115/1.3427917
4.
Bagci
,
C.
,
1982
, “
Complete Shaking Force and Shaking Moment Balancing of Link Mechanisms Using Balancing Idler Loops
,”
ASME. J. Mech. Des.
,
104
(
2
), pp.
482
493
.
5.
Jean
,
M.
, and
Gosselin
,
C. M.
,
1996
, “
Static Balancing of Planar Parallel Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
April
, Vol.
4
, IEEE, pp.
3732
3737
.
6.
Ricard
,
R.
, and
Gosselin
,
C. M.
,
2000
, “
On the Development of Reactionless Parallel Manipulators
,”
Proceedings of ASME Design Engineering Technical Conferences
,
Baltimore, MD
,
September
.
7.
Gosselin
,
C. M.
,
Vollmer
,
F.
,
Côté
,
G.
, and
Wu
,
Y.
,
2004
, “
Synthesis and Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms
,”
IEEE. Trans. Rob. Autom.
,
20
(
2
), pp.
191
199
. 10.1109/TRA.2004.824696
8.
Foucault
,
S.
, and
Gosselin
,
C. m. M.
,
2004
, “
Synthesis, Design, and Prototyping of a Planar Three Degree-of-Freedom Reactionless Parallel Mechanism
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
992
999
. 10.1115/1.1798211
9.
Wu
,
Y.
, and
Gosselin
,
C.
,
2005
, “
Design of Reactionless 3-dof and 6-dof Parallel Manipulators Using Parallelepiped Mechanisms
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
821
833
. 10.1109/TRO.2005.847573
10.
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2009
, “
Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111003
. 10.1115/1.3179150
11.
Wu
,
Y.
, and
Gosselin
,
C. M.
,
2007
, “
On the Dynamic Balancing of Multi-dof Parallel Mechanisms with Multiple Legs
,”
ASME. J. Mech. Des.
,
129
(
2
), pp.
234
238
. 10.1115/1.2406093
12.
Baron
,
N.
,
Philippides
,
A.
, and
Rojas
,
N.
,
2019
, “
A Novel Kinematically Redundant Planar Parallel Robot Manipulator With Full Rotatability
,”
ASME. J. Mech. Rob.
,
11
(
1
), p.
011008
. 10.1115/1.4041698
13.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
457
467
. 10.1109/TRO.2015.2409433
14.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2018
, “
Kinematically Redundant Planar Parallel Mechanisms: Kinematics, Workspace and Trajectory Planning
,”
Mech. Mach. Theory.
,
119
(
1
), pp.
91
105
. 10.1016/j.mechmachtheory.2017.08.022
15.
Mueller
,
A.
,
2013
, “
On the Terminology and Geometric Aspects of Redundant Parallel Manipulators
,”
Robotica
,
31
(
1
), pp.
137
147
. 10.1017/S0263574712000173
16.
Marquet
,
F.
,
Krut
,
S.
,
Company
,
O.
, and
Pierrot
,
F.
,
2001
, “
ARCHI: A New Redundant Parallel Mechanism-Modeling, Control and First Results
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Maui, HI
,
November
, pp.
183
188
.
17.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Rob. Syst.
,
86
(
2
), pp.
175
198
. 10.1007/s10846-016-0430-4
18.
Van Der Wijk
,
V.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Herder
,
J. L.
,
2013
, “
Design and Experimental Evaluation of a Dynamically Balanced Redundant Planar 4-rrr Parallel Manipulator
,”
Int. J. Rob. Res.
,
32
(
6
), pp.
744
759
. 10.1177/0278364913484183
19.
van der Wijk
,
V.
,
Herder
,
J. L.
, and
Demeulenaere
,
B.
,
2009
, “
Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041006
. 10.1115/1.3211022
20.
Laliberté
,
T.
, and
Gosselin
,
C.
,
2013
, “
Dynamic Balancing of Two-dof Parallel Mechanisms Using a Counter-mechanism
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
August
.
21.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob.
,
6
(
3
), pp.
281
290
. 10.1109/70.56660
22.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots Via a Motion-space Model of the Instantaneous Kinematics
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May
, IEEE, pp.
980
985
.
23.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
Trans.-Am. Soc. Mech. Eng. J. Mech. Design
,
117
(
4
), pp.
566
572
.
24.
Baron
,
N.
,
Philippides
,
A.
, and
Rojas
,
N.
,
2020
, “
On the False Positives and False Negatives of the Jacobian Matrix in Kinematically Redundant Parallel Mechanisms
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
951
958
. 10.1109/TRO.2020.2966401
25.
Baron
,
N.
,
Philippides
,
A.
, and
Rojas
,
N.
,
2020
, “
A Robust Geometric Method of Singularity Avoidance for Kinematically Redundant Planar Parallel Robot Manipulators
,”
Mech. Mach. Theory.
,
151
(
1
), p.
103863
. 10.1016/j.mechmachtheory.2020.103863
You do not currently have access to this content.