Abstract

We present a resource for designing bistable developable mechanisms (BDMs) that reach their second stable positions while exterior or interior to a cylindrical surface. Analysis of the necessary conditions to create extramobile and intramobile cylindrical BDMs is conducted through a series of three tests. These tests contain elements of both existing and new mechanism design tools, including a novel graphical method for identifying stable positions of linkages using a single dominant torsional spring, called the principle of reflection. These tests are applied to all possible mechanism cases and configurations to identify why certain configurations will always, sometimes, or never be a BDM. Two tables summarize these results as a guide when designing extramobile and intramobile BDMs. The results are compared and demonstrated with a numerical simulation of 30,000+ mechanisms, including several example mechanisms that illustrate the concepts discussed in the work. Discussion is then provided on the implication of these results.

References

References
1.
Ushakov
,
V.
,
1999
, “
Developable Surfaces in Euclidean Space
,”
J. Australian Mathe. Soc.
,
66
(
3
), pp.
388
402
. 10.1017/S1446788700036685
2.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Develop. Mech. Develop. Surfaces
,”
Science Robotics
,
4
(
27
), p.
eaau5171
. 10.1126/scirobotics.aau5171
3.
Greenwood
,
J. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Regular Cylindrical Surfaces
,”
Mech. Mach. Theory.
,
142
(
12
), p.
103584
. 10.1016/j.mechmachtheory.2019.103584
4.
Murray
,
A.
, and
McCarthy
,
J. M.
,
2020
, “
Computation of the Developable Form of a Planar Four-bar Linkage
,”
2020 USCToMM Mechanical Systems and Robotics Symposium
,
Rapid City, SD
.
5.
Hyatt
,
L. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Developable Mechanisms on Right Conical Surfaces
,”
Mech. Mach. Theory.
,
149
(
7
), p.
103813
. 10.1016/j.mechmachtheory.2020.103813
6.
Richiedei
,
D.
, and
Trevisani
,
A.
,
2020
, “
Optimization of the Energy Consumption Through Spring Balancing of Servo-Actuated Mechanisms
,”
ASME J. Mech. Des.
,
142
(
1
), p.
012301
. 10.1115/1.4043936
7.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
. 10.1002/adma.201501708
8.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
. 10.1002/adma.201601650
9.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
. 10.1115/1.4000529
10.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
. 10.1088/0960-1317/19/2/025011
11.
Su
,
H. J.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
. 10.1115/1.2757192
12.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
. 10.1115/1.3013316
13.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
. 10.1115/1.4004543
14.
Zanaty
,
M.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Programmable Multistable Mechanisms: Synthesis and Modeling
,”
ASME J. Mech. Des.
,
140
(
4
), p.
042301
. 10.1115/1.4038926
15.
Zanaty
,
M.
, and
Henein
,
S.
,
2018
, “
Experimental Characterization of a T-Shaped Programmable Multistable Mechanism
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092301
. 10.1115/1.4040173
16.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
4
), p.
701
. 10.1115/1.1625399
17.
Grashof
,
F.
,
1883
,
Theoretische Maschinenlehre: Bd. Theorie der getriebe und der mechanischen messinstrumente
, Vol.
2
,
L. Voss
,
Hamburg und Leipzig
.
18.
Butler
,
J.
,
Greenwood
,
J.
,
Howell
,
L.
, and
Magleby
,
S.
,
2020
, “
Limits of Extramobile and Intramobile Motion of Cylindrical Developable Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011024
.
19.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
20.
Heath
,
T. L.
,
1956
,
The Thirteen Books of Euclid’s Elements
,
Courier Corporation
,
North Chelmsford, MA
.
21.
Mavanthoor
,
A.
, and
Midha
,
A.
,
2006
, “
Bistable Compliant Four-Bar Mechanisms With a Single Torsional Spring
,”
International Design Engineering Technical Conferences
,
Philadelphia, PA
.
22.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
. 10.1115/1.4000523
23.
Hyatt
,
L. P.
,
Greenwood
,
J. R.
,
Butler
,
J. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Using Cyclic Quadrilaterals to Design Cylindrical Developable Mechanisms
,”
2020 USCToMM Mechanical Systems and Robotics Symposium
,
Rapid City, SD
.
24.
Vedant
,
F.
, and
Allison
,
L. P.
, “
2020
, “
Pseudo-Rigid-Body Dynamic Models for Design of Compliant Members
,”
ASME J. Mech. Des.
,
142
(
3
), pp.
1
22
.
25.
Lobontiu
,
N.
,
Gress
,
T.
,
Munteanu
,
M. G.
, and
Ilic
,
B.
,
2019
, “
Stiffness Design of Circular-axis Hinge, Self-similar Mechanism with Large out-of-plane Motion
,”
ASME J. Mech. Des.
,
141
(
9
), p.
1
. 10.1115/1.4042792
26.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
. https://doi.org/10.1115/1.4046242
You do not currently have access to this content.