Abstract

Simulation models play crucial roles in efficient product development cycles, therefore many studies aim to improve the confidence of a model during the validation stage. In this research, we proposed a dynamic model validation to provide accurate parameter settings for minimal output errors between simulation models and real model experiments. The optimal operations for setting parameters are developed to maximize the effects by specific model parameters while minimizing interactions. To manage the excessive costs associated with simulations of complex systems, we propose a procedure with three main features: the optimal excitation based on global sensitivity analysis (GSA) is done via metamodel techniques, for estimating parameters with the polynomial chaos-based Kalman filter, and validating the updated model based on hypothesis testing. An illustrative mathematical model was used to demonstrate the detail processes in our proposed method. We also apply our method on a vehicle dynamic case with a composite maneuver for exciting unknown model parameters such as inertial and coefficients of the tire model; the unknown model parameters were successfully estimated within a 95% credible interval. The contributions of this research are also underscored through multiple cases.

References

1.
Kutluay
,
E.
, and
Winner
,
H.
,
2014
, “
Validation of Vehicle Dynamics Simulation Models—A Review
,”
Veh. Syst. Dyn.
,
52
(
2
), pp.
186
200
. 10.1080/00423114.2013.868500
2.
Althoff
,
M.
, and
Magdici
,
S.
,
2016
, “
Set-Based Prediction of Traffic Participants on Arbitrary Road Networks
,”
IEEE Trans. Intell. Veh.
,
1
(
2
), pp.
187
202
. 10.1109/TIV.2016.2622920
3.
Hirschmann
,
D.
,
Tissen
,
D.
,
Schroder
,
S.
, and
De Doncker
,
R. W.
,
2007
, “
Reliability Prediction for Inverters in Hybrid Electrical Vehicles
,”
IEEE Trans. Power Electron.
,
22
(
6
), pp.
2511
2517
. 10.1109/TPEL.2007.909236
4.
ASME V&V 10 Committee and Others
,
2006
. “
Guide for Verification and Validation in Computational Solid Mechanics
.”
The American Society of Mechanical Engineers, New York, Technical Report No. V&V 10-2006
.
5.
Allen
,
R. W.
,
Rosenthal
,
T. J.
,
Klyde
,
D. H.
,
Owens
,
K. J.
, and
Szostak
,
H. T.
,
1992
, “
Validation of Ground Vehicle Computer Simulations Developed for Dynamics Stability Analysis
,”
Technical Report, SAE Technical Paper
.
6.
Aster
,
R.
,
Borchers
,
B.
, and
Thurber
,
C.
,
2018
,
Parameter Estimation and Inverse Problems
,
Elsevier
,
Boston, MA
.
7.
Blundell
,
M.
, and
Harty
,
D.
,
2004
,
Multibody Systems Approach to Vehicle Dynamics
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
8.
Setiawan
,
J. D.
,
Safarudin
,
M.
, and
Singh
,
A.
,
2009
, “
Modeling, Simulation and Validation of 14 DOF Full Vehicle Model
,”
International Conference on Instrumentation, Communication Information Technology, and Biomedical Engineering
,
Indonesia
.
9.
ISO Central Secretary
,
2018
, “
Passenger Cars—Test Track for a Severe Lane-Change Manoeuvre—Part 1: Double Lane-Change
,”
Standard ISO/TR 3888-1:2018, International Organization for Standardization, Geneva, CH.
10.
Gawade
,
T.
,
Mukherjee
,
S.
, and
Mohan
,
D.
,
2005
, “
Six-Degree-of-Freedom Three-Wheeled-Vehicle Model Validation
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
219
(
4
), pp.
487
498
. 10.1243/095440705X11194
11.
Presse
,
C.
, and
Gautier
,
M.
,
1993
, “
New Criteria of Exciting Trajectories for Robot Identification
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
.
12.
Calafiore
,
G. C.
,
Indri
,
M.
, and
Bona
,
B.
,
2001
, “
Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation
,”
J. Rob. Syst.
,
18
(
2
), pp.
55
68
. 10.1002/1097-4563(200102)18:2<55::AID-ROB1005>3.0.CO;2-O
13.
Roeser
,
M. S.
,
2018
, “
Multi-axis Maneuver Design for Aircraft Parameter Estimation
,”
Deutscher Luft- und Raumfahrtkongress 2018, Workshop Item
.
14.
Tsai
,
H.-T.
, and
Chan
,
K.-Y.
,
2019
, “
Investigating the Impact of Component Uncertainty on Autonomous Vehicle Overtaking Maneuvers
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
15.
James
,
G.
,
Carne
,
T. G.
, and
Lauffer
,
J. P.
,
1995
, “
The Natural Excitation Technique (NExT) for Modal Parameter Extraction From Operating Structures
,”
Modal Anal. Int. J. Anal. Exp. Modal Anal.
,
10
(
4
), p.
260
.
16.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
1987
, “
Persistent Excitation in Adaptive Systems
,”
Int. J. Control
,
45
(
1
), pp.
127
160
. 10.1080/00207178708933715
17.
Blanchard
,
E. D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
6
), p.
061404
. 10.1115/1.4002481
18.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
. 10.1080/00401706.1999.10485594
19.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
. 10.1115/1.1904642
20.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
(
2
), pp.
259
270
. 10.1016/j.cpc.2009.09.018
21.
Sobol
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
,
7
(
4
), pp.
784
802
.
22.
Lamboni
,
M.
,
Monod
,
H.
, and
Makowski
,
D.
,
2011
, “
Multivariate Sensitivity Analysis to Measure Global Contribution of Input Factors in Dynamic Models
,”
Reliab. Eng. Syst. Saf.
,
96
(
4
), pp.
450
459
. 10.1016/j.ress.2010.12.002
23.
Lamboni
,
M.
,
Makowski
,
D.
, and
Monod
,
H.
,
2008
, “
Multivariate Global Sensitivity Analysis for Discrete-Time Models
,”
Technical Report 2008-3, auto-saisine
.
24.
Sumner
,
T.
,
Shephard
,
E.
, and
Bogle
,
D.
,
2012
, “
A Methodology for Global-Sensitivity Analysis of Time-Dependent Outputs in Systems Biology Modelling
,”
J. R. Soc. Interface
,
9
(
74
), pp.
2156
2166
. 10.1098/rsif.2011.0891
25.
Wang
,
L.
,
2008
, “
Karhunen-loeve Expansions and Their Applications
,”
PhD thesis
,
London School of Economics and Political Science
,
London
.
26.
Huang
,
Y.-C.
, and
Chan
,
K.-Y.
,
2010
, “
A Modified Efficient Global Optimization Algorithm for Maximal Reliability in a Probabilistic Constrained Space
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061002
. 10.1115/1.4001532
27.
Jin
,
R.
,
2004
, “
Enhancements of Metamodeling Techniques in Engineering Design
,”
PhD thesis
,
University of Illinois at Chicago
,
Chicago, IL
.
28.
Finkel
,
D.
,
2003
, “
DIRECT Optimization Algorithm User Guide
,”
Technical Report, Center for Research in Scientific Computation, North Carolina State University
.
29.
Tarantola
,
A.
,
2005
,
Inverse Problem Theory and Methods for Model Parameter Estimation
,
SIAM
,
Philadelphia
.
30.
Wesemeier
,
D.
, and
Isermann
,
R.
,
2009
, “
Identification of Vehicle Parameters Using Stationary Driving Maneuvers
,”
Control Eng. Pract.
,
17
(
12
), pp.
1426
1431
. 10.1016/j.conengprac.2008.10.008
31.
Li
,
J.
, and
Xiu
,
D.
,
2009
, “
A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,”
J. Comput. Phys.
,
228
(
15
), pp.
5454
5469
. 10.1016/j.jcp.2009.04.029
32.
Chan
,
T. F.
, and
Ng
,
M. K.
,
1999
, “
Galerkin Projection Methods for Solving Multiple Linear Systems
,”
SIAM J. Sci. Comput.
,
21
(
3
), pp.
836
850
. 10.1137/S1064827598310227
33.
Astroza
,
R.
,
Ebrahimian
,
H.
, and
Conte
,
J. P.
,
2015
, “
Material Parameter Identification in Distributed Plasticity Fe Models of Frame-Type Structures Using Nonlinear Stochastic Filtering
,”
J. Eng. Mech.
,
141
(
5
), p.
04014149
. 10.1061/(ASCE)EM.1943-7889.0000851
34.
Jazar
,
R. N.
,
2019
,
Advanced Vehicle Dynamics
,
Springer
,
New York
.
35.
Zandieh
,
A.
,
2015
, “
Dynamics of a Three-Wheel Vehicle With Tadpole Design
,”
Master’s thesis
,
University of Waterloo
,
Waterloo
.
36.
Cossalter
,
V.
,
2006
, “
Motorcycle Dynamics
,” Lulu.com.
37.
Bellem
,
H.
,
Schönenberg
,
T.
,
Krems
,
J. F.
, and
Schrauf
,
M.
,
2016
, “
Objective Metrics of Comfort: Developing a Driving Style for Highly Automated Vehicles
,”
Trans. Res. Part F: Traffic Psychol. Behav.
,
41
, pp.
45
54
. 10.1016/j.trf.2016.05.005
You do not currently have access to this content.