Abstract

This research studies the large-displacement response of a fractal-architecture mechanism with circular-axis flexible hinges by formulating an efficient and accurate nonlinear finite element model. Two three-dimensional line elements are proposed whose nodal degrees-of-freedom include the three spatial Tait–Bryan angles. The nonlinear finite element is generated using the minimum potential energy condition for the entire deformed structure in a non-incremental approach. The error does not depend on the number of load steps since one step is sufficient to achieve the final, deformed state. The method is applied to predict the nonlinear, large, out-of-plane displacement of the fractal-hinge compliant mechanism. The model predictions are validated by finite element code simulation and experimental testing. The nonlinear finite element force-displacement data coincide with the linear compliance model predictions of Lobontiu et al. (2019, “Stiffness Design of Circular-Axis Hinge, Self-similar Mechanism With Large Out-of-Plane Motion,” ASME J. Mech. Des., 141(9), p. 092302) for approximately one-fourth lower portion of the load range and display the expected hardening-spring features for the load range remainder.

References

1.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
(
3
), pp.
272
275
.
2.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
3.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1995
, “
Parametric Deflection Approximations for End-Loaded Large Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
4.
Fertis
,
D. G.
,
2006
,
Nonlinear Structural Engineering
,
Springer
,
New York
.
5.
Dado
,
M.
, and
Al-Sadder
,
S.
,
2005
, “
A New Technique for Large Deflection Analysis of Non-prismatic Cantilever Beams
,”
Mech. Res. Commun.
,
32
(
6
), pp.
692
703
.
6.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
London, UK
.
7.
Gotto
,
Y.
,
Toomo
,
Y.
, and
Kakoto
,
O.
,
1990
, “
Elliptic Integral Solutions of Plane Elastica With Axial and Shear Deformation
,”
Int. J. Solids Struct.
,
26
(
4
), pp.
375
390
.
8.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded Large Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
9.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
Chichester, UK
.
10.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
A 3-Spring Pseudo-Rigid-Body Model for Soft Joints with Significant Elongation Effects
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061001
.
11.
Chen
,
L.
,
2010
, “
An Integral Approach for Large Deflection Cantilever Beams
,”
Int. J. Non Linear Mech.
,
45
(
3
), pp.
301
305
.
12.
Sitar
,
M.
,
Kozel
,
F.
, and
Brojan
,
M.
,
2014
, “
A Simple Method for Determining Large Deflection States pf Arbitrarily Curved Planar Elastics
,”
Arch. Appl. Mech.
,
84
(
2
), pp.
263
275
.
13.
Yang
,
T. Y.
,
1973
, “
Matrix Displacement Solution of Elastica Problems of Beams and Frames
,”
Int. J. Solids Struct.
,
9
(
7
), pp.
829
842
.
14.
Thompson
,
B. S.
, and
Sung
,
C. K.
,
1984
, “
A Variational Formulation for the Nonlinear Finite Element Analysis of Flexible Linkages: Theory, Implementation, and Experimental Results
,”
ASME J. Mech. Des.
,
106
(
4
), pp.
482
488
.
15.
Yang
,
Z.
, and
Sadler
,
J. P.
,
1990
, “
Large-Displacement Finite Element Analysis of Flexible Linkages
,”
ASME J. Mech. Des.
,
112
(
2
), pp.
175
182
.
16.
Reissner
,
E.
,
1972
, “
A One-Dimensional Finite Strain Beam Theory: The Plane Problem
,”
J. Appl. Math. Phys.
,
23
(
5
), pp.
795
804
.
17.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. Part I: The Three-Dimensional Dynamic Problem
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
18.
Romero
,
I.
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
51
68
.
19.
Simo
,
J. C.
, and
Vu-Hoc
,
L.
,
2008
, “
On the Dynamics of Flexible Beams Under Large Overall Motion: the Plane Case. Part I and II
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
20.
Ding
,
J.
,
Wallin
,
M.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.
21.
Shabana
,
A. A.
,
Hussein
,
R. A.
, and
Escalona
,
J. L.
,
1998
, “
Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
188
195
.
22.
Shabana
,
A. A.
, and
Yakoub
,
R. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
23.
Sopanen
,
J. T.
, and
Mikkola and
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
35
(
1/2
), pp.
53
74
.
24.
Pagani
,
A.
, and
Carrera
,
E.
,
2018
, “
Unified Formulation of Geometrically Nonlinear Refined Beam Theories
,”
Mech. Adv. Mater. Struc.
,
25
(
1
), pp.
15
31
.
25.
Hui
,
Y.
,
Huang
,
Q.
,
De Pietro
,
G.
,
Giunta
,
G.
,
Hu
,
H.
,
Bellouettar
,
S.
, and
Carrera
,
E.
,
2020
, “
Hierarchical Beam Finite Elements for Geometrically Nonlinear Analysis Coupled With Asymptotic Numerical Method
,”
Mech. Adv. Mater. Struc.
, pp.
1
14
.
26.
Gerardin
,
M.
, and
Cardonna
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
John Wiley and Sons
,
Chichester
.
27.
Simo
,
J. C.
, and
Vu-Hoc
,
L.
,
1986
, “
A Three-Dimensional Finite Strain rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
28.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
,
2013
, “
A Geometrically Non-linear Formulation of a Three-Dimensional Beam Element for Solving Large Deflection Multibody System Problems
,”
Int. J. Nonlinear Mech.
,
53
, pp.
63
74
.
29.
Belytsch
,
T.
,
Schwer
,
L.
, and
Klein
,
M. L.
,
1977
, “
Large Displacement, Transient Analysis of Space Frames
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
65
84
.
30.
Belytschko
,
T.
, and
Glaum
,
L. W.
,
1979
, “
Application of Higher Order Co-rotational Stretch Theories to Nonlinear Finite Element Analysis
,”
Comput. Struct.
,
10
(
1–2
), pp.
175
182
.
31.
Felippa
,
C. A.
, and
Haugen
,
B.
,
2005
, “
A Unified Formulation of Small-Strain Corotational Finite Elements: 1. Theory
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2285
2335
.
32.
Lee
,
S. H.
,
1989
,
MSC/NASTRAN Handbook for Nonlinear Analysis, Version 67
,
MacNeal-Schwendler Corporation
.
33.
Pai
,
P. F.
,
Anderson
,
T. J.
, and
Wheater
,
E. A.
,
2000
, “
Large-Deformation Tests and Total-Lagrangian Finite-Element Analysis of Flexible Beams
,”
Int. J. Solids Struct.
,
37
(
21
), pp.
2951
2980
.
34.
Li
,
M.
,
1997
, “
The Finite Deformation Theory for Beam, Plate and Shell, Part I: The Two-Dimensional Beam Theory
,”
Comput. Methods Appl. Mech. Eng.
,
146
(
1–2
), pp.
53
63
.
35.
Yang
,
Y. B.
,
Kuo
,
S. R.
, and
Wu
,
Y. S.
,
2002
, “
Incrementally Small-Deformation Theory for Nonlinear Analysis of Structural Frames
,”
Eng. Struct.
,
24
(
6
), pp.
783
798
.
36.
Nanakorn
,
Y. B.
, and
Vu
,
L. N.
,
2006
, “
A 2D Field-Consistent Beam Element for Large Displacement Analysis Using the Total Lagrangian Formulation
,”
Finite Elem. Anal. Des.
,
42
(
14–15
), pp.
1240
1247
.
37.
Dmitrochenko
,
O.
,
2008
, “
Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Flexible Multibody Systems
,”
J. Comput. Appl. Math.
,
215
(
2
), pp.
368
377
.
38.
Beheshti
,
A.
,
2016
, “
Large Deformation Analysis of Strain-Gradient Elastic Beams
,”
Comput. Struct.
,
177
, pp.
162
175
.
39.
Hui
,
Y.
,
De Pietro
,
G.
,
Giunta
,
G.
,
Bellouetar
,
S.
,
Hu
,
H.
,
Carrera
,
E.
, and
Pagani
,
A.
,
2018
, “
Geometrically Nonlinear Analysis of Beam Structures and Hierarchical One-Dimensional Finite Elements
,”
Math. Probl. Eng.
,
2018
, pp.
1
22
.
40.
Rezaiee-Pajand
,
M.
,
Rajabzadeh-Safaei
,
N.
, and
Masoodi
,
A. R.
,
2019
, “
An Efficient Mixed Interpolated Curved Beam Element for Geometrical Nonlinear Analysis
,”
Appl. Math. Model.
,
76
, pp.
252
273
.
41.
Suhendro
,
B.
,
1989
, “
A Nonlinear Finite Element for Curved Beams
,”
Ph.D. thesis
,
Michigan State University
,
Ann Arbor, MI
.
42.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Stiffness and Natural Frequency of a 3-DOF Parallel Manipulator With Consideration of Additional Leg Candidates
,”
Rob. Auton. Syst.
,
61
(
8
), pp.
868
875
.
43.
Wu
,
J.
,
Yu
,
G.
,
Gao
,
Y.
, and
Wang
,
L.
,
2018
, “
Mechatronics Modeling and Vibration Analysis of a 2-DOF Parallel Manipulator in a 5-DOF Hybrid Machine Tool
,”
Mech. Mach. Theory
,
121
, pp.
430
445
.
44.
Majumdar
,
R.
, and
Paprotny
,
I.
,
2017
, “
Lithography-Free Self-Reconfigurable Post-Release Stress Engineering of Surface Micro-machined MEMS Structures
,”
J. Microelectro Mech. Syst.
,
26
(
3
), pp.
671
678
.
45.
Majumdar
,
R.
,
Foroutan
,
V.
, and
Paprotny
,
I.
,
2015
, “
Post-Release Stress Engineering of Surface-Micromachined MEMS Structures Using Evaporated Chromium and In-situ Fabricated Reconfigurable Shadow Masks
,”
Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
,
Estoril, Portugal
,
Jan. 18–22
, pp.
296
299
.
46.
Majumdar
,
R.
,
Foroutan
,
V.
, and
Paprotny
,
I.
,
2014
, “
Tactile Sensing and Compliance in MicroStressbot Assemblies
,”
Proceedings of the SPIE Defence Security and Sensing
,
Baltimore, MD
,
May 5–9
, Vol. 9116, p.
911604
.
47.
Lobontiu
,
N.
,
Gress
,
T.
,
Munteanu
,
M. G.
, and
Ilic
,
B.
,
2019
, “
Stiffness Design of Circular-Axis Hinge, Self-similar Mechanism With Large Out-of-Plane Motion
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092302
.
48.
Barraco
,
A.
, and
Munteanu
,
M. G.
,
2002
, “
A Special Finite Element for Static and Dynamic Study of Mechanical Systems Under Large Motion, Part 1
,”
Revue Europeenne des Elements Finis
,
11
(
6
), pp.
773
790
.
49.
Munteanu
,
M. G.
, and
Barraco
,
A.
,
2002
, “
A Special Finite Element for Static and Dynamic Study of Mechanical Systems Under Large Motion, Part 2
,”
Revue Europeenne des Elements Finis
,
11
(
6
), pp.
791
814
.
50.
Oprea
,
J.
,
2007
,
Differential Geometry and Its Applications
,
The Mathematical Association of America
,
Washington, DC
.
You do not currently have access to this content.