Abstract

This paper introduces an extended dynamic stiffness modeling approach for concurrent kinetostatic and dynamic analyses of planar flexure-hinge mechanisms with lumped compliance. First, two novel dynamic stiffness matrices are derived for two types of flexure hinge connected to rigid bodies by shifting the end node to the mass center of rigid bodies considering the geometric effect of rigid motion. A straightforward modeling procedure is then proposed for the whole compliant mechanism based on d'Alembert's principle by selecting the displacements at both the mass center of rigid bodies and the rest end nodes of flexure hinges as the hybrid state variables. With the presented method, the statics and dynamics of flexure-hinge mechanisms with irregular-shaped rigid bodies in complex serial-parallel configurations can be analyzed in a concise form. The presented method is compared with other theoretical models, finite element simulation, and experiments for three case studies of a bridge-type compliant mechanism, a leveraged XY precision positioning stage, and a Scott–Russell-mechanism-based XYθ flexure manipulator. The results reveal the easy operation and well prediction accuracy of the presented method.

References

1.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
2.
Li
,
Y. Z.
,
Zhu
,
X. F.
,
Bi
,
S. S.
,
Guo
,
R. H.
,
Sun
,
J. H.
, and
Hu
,
W. C.
,
2020
, “
Design and Development of Compliant Mechanisms for Electromagnetic Force Balance Sensor
,”
Precis. Eng.
,
64
(
4
), pp.
157
164
.
3.
Li
,
J. Y.
,
Peng
,
Y.
, and
Li
,
J.
,
2019
, “
Displacement Amplification Ratio Modeling of Bridge-Type Nano-positioners With Input Displacement Loss
,”
Mech. Sci.
,
10
(
1
), pp.
299
307
.
4.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1–2
), pp.
7
15
.
5.
Ling
,
M. X.
,
Howell
,
L. L.
,
Cao
,
J. Y.
, and
Chen
,
G. M.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
6.
Huo
,
T. L.
,
Yu
,
J. J.
, and
Zhao
,
H. Z.
,
2020
, “
Design of a Kinematic Flexure Mount for Precision Instruments Based on Stiffness Characteristics of Flexural Pivot
,”
Mech. Mach. Theory
,
150
(
8
), p.
103868
.
7.
Su
,
H. J.
,
2009
, “
A Pseudo-Rigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
8.
Hao
,
G. B.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
1
11
.
9.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
10.
Yang
,
X.
, and
Zhu
,
W. L.
,
2019
, “
Design, Analysis, and Control of an XY Parallel Nanomanipulator With Multiple Actuation Modes
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7639
7648
.
11.
Wei
,
H. X.
,
Shirinzadeh
,
B.
,
Li
,
W.
,
Clark
,
L.
,
Pinskier
,
J.
, and
Wang
,
Y. Q.
,
2017
, “
Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification
,”
Micromachines
,
8
(
8
), p.
238
.
12.
Jung
,
H. J.
, and
Kim
,
J. H.
,
2014
, “
Novel Piezo Driven Motion Amplified Stage
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2141
2147
.
13.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
,
81
(
32
), pp.
2797
2810
.
14.
Mcpherson
,
T.
, and
Ueda
,
J.
,
2014
, “
A Force and Displacement Self-sensing Piezoelectric MRI-Compatible Tweezer End Effector With an On-site Calibration Procedure
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
755
764
.
15.
Bilancia
,
P.
, and
Berselli
,
G.
,
2021
, “
An Overview of Procedures and Tools for Designing Nonstandard Beam-Based Compliant Mechanisms
,”
Comput.-Aided Des.
,
134
(
5
), p.
103001
.
16.
Zhu
,
B. L.
,
Zhang
,
X. M.
,
Zhang
,
H. C.
,
Liang
,
J. W.
,
Zang
,
H. Y.
,
Li
,
H.
, and
Wang
,
R. Z.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
(
1
), p.
103622
.
17.
Kim
,
C. J.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
.
18.
Mattson
,
C. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2004
, “
Development of Commercially Viable Compliant Mechanisms Using the Pseudo-rigid-body Model: Case Studies of Parallel Mechanisms
,”
J. Intell. Mater. Syst. Struct.
,
15
(
3
), pp.
195
202
.
19.
Yong
,
Y. K.
,
Aphale
,
S. S.
, and
Moheimani
,
S. R.
,
2008
, “
Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.
20.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2013
, “
Design and Kinematics Modeling of a Novel 3-DOF Monolithic Manipulator Featuring Improved Scott-Russell Mechanisms
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101004
.
21.
Dong
,
W.
,
Chen
,
F. X.
,
Yang
,
M.
,
Du
,
Z. J.
,
Tang
,
J.
, and
Zhang
,
D.
,
2017
, “
Development of a Highly Efficient Bridge-Type Mechanism Based on Negative Stiffness
,”
Smart Mater. Struct.
,
26
(
9
), p.
095053
.
22.
Pham
,
H. H.
, and
Chen
,
I. M.
,
2005
, “
Stiffness Modeling of Flexure Parallel Mechanism
,”
Precis. Eng.
,
29
(
4
), pp.
467
478
.
23.
Wang
,
R. Z.
,
Zhou
,
X. M.
, and
Zhu
,
Z.
,
2013
, “
Development of a Novel Sort of Exponent-Sine-Shaped Flexure Hinges
,”
Rev. Sci. Instrum.
,
84
(
9
), p.
095008
.
24.
Ryu
,
J. W.
,
Lee
,
S. Q.
,
Gweon
,
D. G.
, and
Moon
,
K. S.
,
1999
, “
Inverse Kinematic Modeling of a Coupled Flexure Hinge Mechanism
,”
Mechatron.
,
9
(
6
), pp.
657
674
.
25.
Noveanu
,
S.
,
Lobontiu
,
N.
,
Lazaro
,
J.
, and
Mandru
,
D.
,
2015
, “
Substructure Compliance Matrix Model of Planar Branched Flexure-Hinge Mechanisms: Design, Testing and Characterization of a Gripper
,”
Mech. Mach. Theory
,
91
(
9
), pp.
1
20
.
26.
Friedrich
,
R.
,
Lammering
,
R.
, and
Rösner
,
M.
,
2014
, “
On the Modeling of Flexure Hinge Mechanisms With Finite Beam Elements of Variable Cross Section
,”
Precis. Eng.
,
38
(
4
), pp.
915
920
.
27.
Ling
,
M. X.
,
Cao
,
J. Y.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2017
, “
A Semi-analytical Modeling Method for the Static and Dynamic Analysis of Complex Compliant Mechanism
,”
Precis. Eng.
,
52
, pp.
64
72
.
28.
Li
,
H. Y.
, and
Hao
,
G. B.
,
2017
, “
Constraint-Force-Based Approach of Modelling Compliant Mechanisms: Principle and Application
,”
Precis. Eng.
,
47
, pp.
158
181
.
29.
She
,
Y.
,
Meng
,
D. S.
, and
Su
,
H. J.
,
2018
, “
Introducing Mass Parameters to Pseudo-rigid-Body Models for Precisely Predicting Dynamics of Compliant Mechanisms
,”
Mech. Mach. Theory
,
126
, pp.
273
294
.
30.
Tian
,
Y. L.
,
Shirinzadeh
,
B.
, and
Zhang
,
D. W.
,
2010
, “
Design and Dynamics of a 3-DOF Flexure-Based Parallel Mechanism for Micro/Nano Manipulation
,”
Microelectron. Eng.
,
87
(
2
), pp.
230
241
.
31.
Zhu
,
Z. W.
,
Zhou
,
X. Q.
, and
Liu
,
Z. W.
,
2014
, “
Development of a Piezoelectrically Actuated Two-Degree-of-Freedom Fast Tool Servo With Decoupled Motions for Micro-/Nanomachining
,”
Precis. Eng.
,
38
(
4
), pp.
809
820
.
32.
Zheng
,
L.
,
Chen
,
W.
,
Huo
,
D.
, and
Lyu
,
X.
,
2020
, “
Design, Analysis and Control of a 2D Vibration Device for Vibration Assisted Micro Milling
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1510
1518
.
33.
Lee
,
H. J.
,
Kim
,
H. C.
,
Kim
,
H. Y.
, and
Gweon
,
D. G.
,
2013
, “
Optimal Design and Experiment of a Three-Axis Out-of-Plane Nano Positioning Stage Using a New Compact Bridge-Type Displacement Amplifier
,”
Rev. Sci. Instrum.
,
84
(
11
), p.
115103
.
34.
Rösner
,
M.
,
Lammering
,
R.
, and
Friedrich
,
R.
,
2015
, “
Dynamic Modeling and Model Order Reduction of Compliant Mechanisms
,”
Precis. Eng.
,
42
, pp.
85
92
.
35.
Kim
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
,
2004
, “
Development and Optimization of 3-D Bridge-Type Hinge Mechanisms
,”
Sens. Actuators, A
,
116
(
3
), pp.
530
538
.
36.
Wang
,
Q. L.
, and
Zhang
,
X. M.
,
2015
, “
Fatigue Reliability Based Optimal Design of Planar Compliant Micropositioning Stages
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
105117
.
37.
Ling
,
M. X.
,
Howell
,
L. L.
, and
Cao
,
J. Y.
,
2018
, “
A Pseudo-static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051011
.
38.
Ling
,
M. X.
,
Cao
,
J. Y.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms With a Two-Port Dynamic Stiffness Model
,”
Precis. Eng.
,
57
, pp.
149
161
.
39.
Ling
,
M. X.
, and
Zhang
,
X. M.
,
2021
, “
Coupled Dynamic Modeling of Piezo-actuated Compliant Mechanisms Subjected to External Loads
,”
Mech. Mach. Theory
,
160
, p.
104283
.
40.
Ma
,
H. W.
,
Yao
,
S. M.
,
Wang
,
L. Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators, A
,
132
(
2
), pp.
730
736
.
41.
Xu
,
Q. S.
, and
Li
,
Y. M.
,
2011
, “
Analytical Modeling, Optimization and Testing of a Compound Bridge-Type Compliant Displacement Amplifier
,”
Mech. Mach. Theory
,
46
(
2
), pp.
183
200
.
42.
Qi
,
K. Q.
,
Xiang
,
Y.
,
Fang
,
C.
,
Zhang
,
Y.
, and
Yu
,
C. S.
,
2015
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism
,”
Mech. Mach. Theory
,
87
, pp.
45
56
.
43.
Ling
,
M. X.
,
Cao
,
J. Y.
,
Zeng
,
M. H.
,
Lin
,
J.
, and
Inman
,
D. J.
,
2016
, “
Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms
,”
Smart Mater. Struct.
,
25
(
7
), pp.
75022
75032
.
You do not currently have access to this content.