Abstract

Bio-inspired design is a highly promising avenue for uncovering novel traumatic brain injury prevention equipment designs. Nature has a history of providing inspiration for breakthrough innovations, particularly in cases when the traditional engineering mindset has failed to advance problem- solving. This work identifies patterns and trends in the ways that nature defends against external stimuli and predators, investigating them with the goal of highlighting promising inspiration for brain injury prevention. Two key strategies were found missing in engineering applications while identifying patterns and strategies used in nature: (1) connections between layers in multilayered material structures and (2) the use of multiple strategies in a single design. Nine organisms are highlighted in detail as examples of patterns in biological methods of protection, both on a macro and microscale. These findings include the coconut’s shell, the pomelo fruit’s peel, the golden scale snail’s shell, the ironclad beetle’s exoskeleton, the woodpecker’s skull, the Arapaima fish’s scales, conch shells, and the dactyl club of shrimp. The results highlight knowledge gaps preventing these findings from being applied as well as recommendations for moving toward their use in engineering design.

References

1.
Amorim
,
L.
,
Santos
,
A.
,
Nunes
,
J. P.
, and
Viana
,
J. C.
,
2021
, “
Bioinspired Approaches for Toughening of Fibre Reinforced Polymer Composites
,”
Mater. Des.
,
199
, p.
109336
.
2.
Autumn
,
K.
,
Niewiarowski
,
P.
, and
Puthoff
,
J.
,
2014
, “
Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering
,”
Annu. Rev. Ecol. Evol. Syst.
,
45
(
1
), pp.
445
470
.
3.
High Speed Train Inspired by the Kingfisher—Innovation—AskNature
,” asknature.org/innovation/high-speed-train-inspired-by-the-kingfisher/
4.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
, et al
,
2015
, “
Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
.
5.
Kokkinis
,
D.
,
Bouville
,
F.
, and
Studart
,
A.
,
2018
, “
3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients
,”
Adv. Mater.
,
30
(
19
), p.
1705808
.
6.
Gu
,
G.
,
Takaffoli
,
M.
, and
Buehler
,
M.
,
2017
, “
Hierarchically Enhanced Impact Resistance of Bioinspired Composites
,”
J. Adv. Mater.
,
29
(
28
), p.
1700060
.
7.
Fernandes
,
F.
, and
Alves de Sousa
,
R.
,
2013
, “
Motorcycle Helmets—A State of the Art Review
,”
Accid. Anal. Prev.
,
56
, pp.
1
21
.
8.
Soe
,
S.
,
Martin
,
P.
,
Jones
,
M.
,
Robinson
,
M.
, and
Theobald
,
P.
,
2015
, “
Feasibility of Optimising Bicycle Helmet Design Safety Through the use of Additive Manufactured TPE Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
79
(
9
), pp.
1975
1982
.
9.
Mehta
,
P.
,
Ocampo
,
J.
,
Tovar
,
A.
, and
Chaudhari
,
P.
,
2016
, “
Bio-Inspired Design of Lightweight and Protective Structures
,”
SAE 2016 World Congress & Exhibition
,
Apr. 5
,
SAE International
,
Detroit, MI
, pp.
1
8
.
10.
Najmon
,
J.
,
Jacob
,
D.
,
Wood
,
Z.
, and
Tovar
,
A.
,
2018
, “
Cellular Helmet Liner Design Through Bio-Inspired Structures and Topology Optimization of Compliant Mechanism Lattices
,”
SAE Int. J. Transp. Saf.
,
6
(
3
), pp.
217
236
.
11.
McCullar
,
K.
,
Rhodes
,
P.
,
Underhill
,
S.
, and
Nagel
,
J.
,
2016
, “
Application of Bio-inspired Design to Minimize Material Diversity
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
ASME
, pp.
1
9
.
12.
Hoshizaki
,
T.
,
Post
,
A.
,
Oeur
,
R.
, and
Brien
,
S.
,
2014
, “
Current and Future Concepts in Helmet and Sports Injury Prevention
,”
Neurosurgery
,
75
(
4
), pp.
S136
S148
.
13.
Peterson
,
A.
,
Xu
,
L.
,
Daugherty
,
J.
, and
Breiding
,
M.
,
2019
, “Surveillance Report of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths, United States, 2014,” Report, Centers for Disease Control and Prevention, Atlanta, GA.
14.
CDC
,
2021
, “Get the Facts About TBI,”. www.cdc.gov/traumaticbraininjury/get_the_facts.html
15.
Ma
,
X.
,
Aravind
,
A.
,
Pfister
,
B.
,
Chandra
,
N.
, and
Haorah
,
J.
,
2019
, “
Animal Models of Traumatic Brain Injury and Assessment of Injury Severity
,”
Mol. Neurobiol.
,
56
(
8
), pp.
5332
5345
.
16.
Vnuk
,
D.
,
Pirkić
,
B.
,
Matičić
,
D.
,
Radišić
,
B.
,
Stejskal
,
M.
,
Babić
,
T.
,
Kreszinger
,
M.
, and
Lemo
,
N.
,
2004
, “
Feline High-Rise Syndrome: 119 Cases (1998–2001)
,”
J. Feline Med. Surg.
,
6
(
5
), pp.
305
312
.
17.
Wang
,
T.
,
Yang
,
X.
,
Liang
,
J.
,
Yao
,
G.
, and
Zhao
,
W.
,
2013
, “
CFD Based Investigation on the Impact Acceleration When a Gannet Impacts With Water During Plunge Diving
,”
Bioinspir. Biomim.
,
8
(
3
), p.
036006
.
18.
2021
, “
Ask Nature
,” asknature.org.
19.
Chen
,
P.
,
2020
, “
Diabolical Ironclad Beetles Inspire Tougher Joints for Engineering Applications
,”
Nature
,
586
(
7830
)
,
pp.
502
504
.
20.
Gibson
,
L.
,
2006
, “
Woodpecker Pecking: How Woodpeckers Avoid Brain Injury
,”
J. Zool.
,
270
(
3
), pp.
462
465
.
21.
Goel
,
A.
,
McAdams
,
D.
, and
Stone
,
R.
,
2015
,
Biologically Inspired Design
,
Springer
,
London
.
22.
Ortiz
,
J.
,
Zhang
,
G.
, and
McAdams
,
D.
,
2018
, “
A Model for the Design of a Pomelo Peel Bioinspired Foam
,”
ASME J. Mech. Des.
,
140
(
11
), p. 114501.
23.
Tang
,
X.
, and
Staack
,
D.
,
2019
, “
Bioinspired Mechanical Device Generates Plasma in Water via Cavitation
,”
Sci. Adv.
,
5
(
3
), pp.
1
8
.
24.
Yargın
,
G.
,
Firth
,
R.
, and
Crilly
,
N.
,
2018
, “
User Requirements for Analogical Design Support Tools: Learning From Practitioners of Bio-inspired Design
,”
Des. Stud.
,
58
, pp.
1
35
.
25.
Trotta
,
M.
,
2011
, “
Bio-inspired Design Methodology
,”
Int. J. Inf. Sci.
,
1
(
1
), pp.
1
11
.
26.
Fu
,
K.
,
Moreno
,
D.
,
Yang
,
M.
, and
Wood
,
K.
,
2014
, “
Bio-inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111102
.
27.
Chen
,
C.
,
Tao
,
Y.
,
Li
,
Y.
,
Liu
,
Q.
,
Li
,
S.
, and
Tang
,
Z.
,
2021
, “
A Structure-Function Knowledge Extraction Method for Bio-Inspired Design
,”
Comput. Ind.
,
127
, p.
103402
.
28.
Graeff
,
E.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2021
, “
Linkage, an Online Tool to Support Interdisciplinary Biomimetic Design Teams
,”
ASME J. Mech. Des.
,
143
(
10
), p.
101401
.
29.
Reap
,
J.
, and
Bras
,
B.
,
2014
, “
A Method of Finding Biologically Inspired Guidelines for Environmentally Benign Design and Manufacturing
,”
ASME J. Mech. Des.
,
136
(
11
), p.111110.
30.
Goel
,
A.
,
McAdams
,
D.
, and
Stone
,
R.
,
2014
, “
Special Issue on Biologically Inspired Design
,”
ASME J. Mech. Des.
,
136
(
11
), p.
110301
.
31.
Kumar
,
S.
,
Ubaid
,
J.
,
Abishera
,
R.
,
Schiffer
,
A.
, and
Deshpande
,
V.
,
2019
, “
Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing
,”
ACS Appl. Mater. Interfaces
,
11
(
45
), pp.
42549
42560
.
32.
Nguyen
,
X.
,
Hou
,
S.
,
Liu
,
T.
, and
Han
,
X.
,
2016
, “
A Potential Natural Energy Absorption Material—Coconut Mesocarp: Part A: Experimental Investigations on Mechanical Properties
,”
Int. J. Mech. Sci.
,
115-116
, pp.
564
573
.
33.
Lu
,
C.
,
Hou
,
S.
,
Zhang
,
Z.
,
Chen
,
J.
,
Li
,
Q.
, and
Han
,
X.
,
2020
, “
The Mystery of Coconut Overturns the Crashworthiness Design of Composite Materials
,”
Int. J. Mech. Sci.
,
168
, p.
105244
.
34.
Liu
,
T.
,
Hou
,
S.
,
Nguyen
,
X.
, and
Han
,
X.
,
2017
, “
Energy Absorption Characteristics of Sandwich Structures With Composite Sheets and Bio Coconut Core
,”
Compos. B. Eng.
,
114
, pp.
328
338
.
35.
Wang
,
L.
,
Lu
,
S.
,
Liu
,
X.
,
Niu
,
X.
,
Wang
,
C.
,
Ni
,
Y.
,
Zhao
,
M.
,
Feng
,
C.
,
Zhang
,
M.
, and
Fan
,
Y.
,
2013
, “
Biomechanism of Impact Resistance in the Woodpecker’s Head and Its Application
,”
Sci. China Life Sci.
,
56
(
8
), pp.
715
719
.
36.
Lee
,
N.
,
Horstemeyer
,
M.
,
Rhee
,
H.
,
Nabors
,
B.
,
Liao
,
J.
, and
Williams
,
L.
,
2014
, “
Hierarchical Multiscale Structure–Property Relationships of the Red-Bellied Woodpecker (Melanerpes Carolinus) Beak
,”
J. R. Soc. Interface
,
11
(
96
), p.
20140274
.
37.
Yao
,
H.
,
Dao
,
M.
,
Imholt
,
T.
,
Huang
,
J.
,
Wheeler
,
K.
,
Bonilla
,
A.
,
Suresh
,
S.
, and
Ortiz
,
C.
,
2010
, “
Protection Mechanisms of the Iron-Plated Armor of a Deep-sea Hydrothermal Vent Gastropod
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
3
), pp.
987
992
.
38.
Rhee
,
H.
,
Horstemeyer
,
M.
,
Hwang
,
Y.
,
Lin
,
H.
,
El Kadiri
,
H.
, and
Trim
,
W.
,
2009
, “
A Study on the Structure and Mechanical Behavior of the Terrapene Carolina Carapace: A Pathway to Design Bio-inspired Synthetic Composites
,”
Mater. Sci. Eng. C
,
29
(
8
), pp.
2333
2339
.
39.
Chen
,
J.
,
Gu
,
C.
,
Guo
,
S.
,
Wan
,
C.
,
Wang
,
X.
,
Xie
,
J.
, and
Hu
,
X.
,
2012
, “
Integrated Honeycomb Technology Motivated by the Structure of Beetle Forewings
,”
Mater. Sci. Eng. C
,
32
(
7
), pp.
1813
1817
.
40.
Rivera
,
J.
,
Yaraghi
,
N.
,
Arango
,
D.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2017
, “
Compression Resistant Designs From the Exoskeleton of a Tough Beetle
,”
ICCM International Conferences on Composite Materials
,
Xi'an, China
,
Aug. 20–25
.
41.
Rivera
,
J.
,
Hosseini
,
M.
,
Restrepo
,
D.
,
Murata
,
S.
,
Vasile
,
D.
,
Parkinson
,
D.
,
Barnard
,
H.
,
Arakaki
,
A.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2020
, “
Toughening Mechanisms of the Elytra of the Diabolical Ironclad Beetle
,”
Nature
,
586
(
7830
), pp.
543
548
.
42.
Ashby
,
M. F.
, and
Medalist
,
R. F.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Mater. Trans. A
,
14
(
9
), pp.
1755
1769
.
43.
Jamshidi
,
Y.
,
Anaraki
,
A.
,
Sadighi
,
M.
,
Kadkhodapour
,
J.
,
Mirbagheri
,
S.
, and
Akhavan
,
B.
,
2021
, “
Micro-structure Analysis of Quasi-static Crushing and Low-Velocity Impact Behavior of Graded Composite Metallic Foam Filled Tube
,”
Met. Mater. Int.
,
27
(
5
), pp.
871
884
.
44.
Fischer
,
S.
,
Thielen
,
M.
,
Loprang
,
R.
,
Seidel
,
R.
,
Fleck
,
C.
,
Speck
,
T.
, and
Bührig-Polaczek
,
A.
,
2010
, “
Pummelos as Concept Generators for Biomimetically Inspired Low Weight Structures With Excellent Damping Properties
,”
Adv. Eng. Mater.
,
12
(
12
), pp.
B658
B663
.
45.
Martone
,
P.
,
Boller
,
M.
,
Burgert
,
I.
,
Dumais
,
J.
,
Edwards
,
J.
,
Mach
,
K.
,
Rowe
,
N.
,
Rueggeberg
,
M.
,
Seidel
,
R.
, and
Speck
,
T.
,
2010
, “
Mechanics Without Muscle: Biomechanical Inspiration From the Plant World
,”
Integr. Comp. Biol.
,
50
(
5
), pp.
888
907
.
46.
Seidel
,
R.
,
Bührig-Polaczek
,
A.
,
Fleck
,
C.
, and
Speck
,
T.
,
2009
, “
Impact Resistance of Hierarchically Structured Fruit Walls and Nut Shells in View of Biomimetic Applications
,”
Proceedings of the 6th Plant Biomechanics Conference. French Guyana, France: ECOFOG
,
French Guyana
,
Nov. 16–21
, pp.
406
411
.
47.
Seidel
,
R.
,
Thielen
,
M.
,
Schmitt
,
C.
,
Bührig-Polaczek
,
A.
,
Fleck
,
C.
, and
Speck
,
T.
,
2013
, “
Fruit Walls and Nut Shells as an Inspiration for the Design of Bio-inspired Impact-Resistant Hierarchically Structured Materials
,”
Int. J. Des. Nat. Ecodynamics
,
8
(
2
), pp.
172
179
.
48.
Ha
,
N.
,
Lu
,
G.
,
Shu
,
D.
, and
Yu
,
T.
,
2020
, “
Mechanical Properties and Energy Absorption Characteristics of Tropical Fruit Durian (Durio Zibethinus)
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103603
.
49.
Matsushita
,
A.
,
Gonzalez
,
D.
,
Wang
,
M.
,
Doan
,
J.
,
Qiao
,
Y.
, and
McKittrick
,
J.
,
2020
, “
Beyond Density: Mesostructural Features of Impact Resistant Wood
,”
Mater. Today Commun.
,
22
, p.
100697
.
50.
Seki
,
Y.
,
Schneider
,
M.
, and
Meyers
,
M.
,
2005
, “
Structure and Mechanical Behavior of a Toucan Beak
,”
Acta Mater.
,
53
(
20
), pp.
5281
5296
.
51.
Seki
,
Y.
,
Kad
,
B.
,
Benson
,
D.
, and
Meyers
,
M.
,
2006
, “
The Toucan Beak: Structure and Mechanical Response
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1412
1420
.
52.
McKittrick
,
J.
,
Chen
,
P.
,
Bodde
,
S.
,
Yang
,
W.
, and
Novitskaya
,
E.
,
2012
, “
The Structure, Functions, and Mechanical Properties of Keratin
,”
JOM
,
64
(
4
), pp.
449
468
.
53.
Chen
,
P. Y.
,
Lin
,
A.
,
Stokes
,
A.
,
Seki
,
Y.
,
Bodde
,
S.
, and
McKittrick
,
J.
,
2008
, “
Structural Biological Materials: Overview of Current Research
,”
JOM
,
60
(
6
), pp.
23
32
.
54.
Phoenix
,
S.
, and
Beyerlein
,
I.
,
2000
, “1.19—Statistical Strength Theory for Fibrous Composite Materials,”
Comprehensive Composite Materials
,
A
.
Kelly
, and
C
.
Zweben
, eds.,
Oxford
,
Pergamon
, pp.
559
639
.
55.
Rhee
,
H.
,
Horstemeyer
,
M.
, and
Ramsay
,
A.
,
2011
, “
A Study on the Structure and Mechanical Behavior of the Dasypus Novemcinctus Shell
,”
Mater. Sci. Eng. C
,
31
(
2
), pp.
363
369
.
56.
Liang
,
Y.
,
Zhao
,
J.
,
Wang
,
L.
, and
Li
,
F.
,
2008
, “
The Relationship Between Mechanical Properties and Crossed-Lamellar Structure of Mollusk Shells
,”
Mater. Sci. Eng. A
,
483–484
, pp.
309
312
.
57.
Weaver
,
J. C.
,
Milliron
,
G. W.
,
Miserez
,
A.
,
Evans-Lutterodt
,
K.
,
Herrera
,
S.
,
Gallana
,
I.
,
Mershon
,
W. J.
, et al
,
2012
, “
The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer
,”
Science
,
336
(
6086
), pp.
1275
1280
.
58.
Sherman
,
V.
,
Quan
,
H.
,
Yang
,
W.
,
Ritchie
,
R.
, and
Meyers
,
M.
,
2017
, “
A Comparative Study of Piscine Defense: The Scales of Arapaima Gigas, Latimeria Chalumnae and Atractosteus Spatula
,”
J. Mech. Behav. Biomed. Mater.
,
73
, pp.
1
16
.
59.
Yang
,
W.
,
Sherman
,
V.
,
Gludovatz
,
B.
,
Mackey
,
M.
,
Zimmermann
,
E.
,
Chang
,
E.
,
Schaible
,
E.
, et al
,
2014
, “
Protective Role of Arapaima Gigas Fish Scales: Structure and Mechanical Behavior
,”
Acta Biomater.
,
10
(
8
), pp.
3599
3614
.
60.
Fernandez
,
J.
, and
Ingber
,
D.
,
2013
, “
Bioinspired Chitinous Material Solutions for Environmental Sustainability and Medicine
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4454
4466
.
61.
Achrai
,
B.
, and
Wagner
,
H.
,
2013
, “
Micro-structure and Mechanical Properties of the Turtle Carapace as a Biological Composite Shield
,”
Acta Biomater.
,
9
(
4
), pp.
5890
5902
.
62.
Yaraghi
,
N.
,
Rivera
,
J.
,
Grunenfelder
,
L.
,
Salinas
,
C.
, and
Kisailus
,
D.
,
2015
, “Nature’s Tough Composites: A Look Into Biological Fibrous Architectures,”
Composites at Lake Louise (CALL 2015)
,
J
Smay
, ed.,
Lake Louise
,
Alberta, Canada
.
63.
Graupner
,
N.
,
Labonte
,
D.
,
Humburg
,
H.
,
Buzkan
,
T.
,
Dörgens
,
A.
,
Kelterer
,
W.
, and
Müssig
,
J.
,
2017
, “
Functional Gradients in the Pericarp of the Green Coconut Inspire Asymmetric Fibre-Composites with Improved Impact Strength, and Preserved Flexural and Tensile Properties
,”
Bioinspir. Biomim.
,
12
(
2
), p.
026009
.
64.
Hartung
,
M.
, and
Storey
,
W.
,
1939
, “
The Development of the Fruit of Macadamia Ternifolia
,”
J. Agric. Res.
,
59
(
6
), pp.
397
406
.
65.
Bertram
,
J.
, and
Gosline
,
J.
,
1987
, “
Functional Design of Horse Hoof Keratin: the Modulation of Mechanical Properties Through Hydration Effects
,”
J. Exp. Biol.
,
130
(
1
), pp.
121
136
.
66.
Zhi-yong
,
M.
,
Qing-ying
,
Q.
,
Pei-en
,
F.
,
Men-hong
,
S.
, and
Ling-bin
,
Z.
,
2010
, “
Concept System and Application Method of Mechanical Symmetry
,”
J4
,
44
(
12
), pp.
2354
2359
.
67.
Biju
,
B.
,
Ramesh
,
A.
,
Krishnan
,
A.
,
Nath
,
A.
, and
Francis
,
C.
,
2020
, “
Damping Characteristics of Woodpecker Inspired Layered Shock Absorbing Structures
,”
Mater. Today: Proc.
,
25
, pp.
140
143
.
68.
Mencattelli
,
L.
, and
Pinho
,
S.
,
2019
, “
Realising Bio-inspired Impact Damage-Tolerant Thin-Ply CFRP Bouligand Structures via Promoting Diffused Sub-critical Helicoidal Damage
,”
Compos. Sci. Technol.
,
182
, p.
107684
.
69.
Ginzburg
,
D.
,
Pinto
,
F.
,
Iervolino
,
O.
, and
Meo
,
M.
,
2017
, “
Damage Tolerance of Bio-Inspired Helicoidal Composites Under Low Velocity Impact
,”
Compos. Struct.
,
161
, pp.
187
203
.
70.
Seki
,
Y.
,
Mackey
,
M.
, and
Meyers
,
M.
,
2012
, “
Structure and Micro-computed Tomography-Based Finite Element Modeling of Toucan Beak
,”
J. Mech. Behav. Biomed. Mater.
,
9
, pp.
1
8
.
71.
Doineau
,
E.
,
Cathala
,
B.
,
Benezet
,
J.
,
Bras
,
J.
, and
Le Moigne
,
N.
,
2021
, “
Development of Bio-inspired Hierarchical Fibres to Tailor the Fibre/Matrix Interphase in (Bio)Composites
,”
Polymers
,
13
(
5
), p.
804
.
72.
Li
,
T.
,
Wang
,
H.
,
Huang
,
S.
,
Lou
,
C.
, and
Lin
,
J.
,
2019
, “
Bioinspired Foam Composites Resembling Pomelo Peel: Structural Design and Compressive, Bursting and Cushioning Properties
,”
Compos. B. Eng.
,
172
, pp.
290
298
.
73.
Xiao
,
D.
,
Mu
,
L.
, and
Zhao
,
G.
,
2015
, “
The Influence of Correlating Material Parameters of Gradient Foam Core on Free Vibration of Sandwich Panel
,”
Compos. B. Eng.
,
77
, pp.
153
161
.
74.
Gedeon
,
M.
,
2010
, “Grain Size and Material Strength,”
Technical Tidbits
,
Brush Wellman Inc.
.
75.
Wang
,
L.
,
Cui
,
Y.
,
Qin
,
Q.
,
Wang
,
H.
, and
Wang
,
J.
,
2016
, “
Helical Fiber Pull-Out in Biological Materials
,”
Acta Mech. Solida Sin.
,
29
(
3
), pp.
245
256
.
76.
Wang
,
B.
,
Yang
,
W.
,
Sherman
,
V.
, and
Meyers
,
M.
,
2016
, “
Pangolin Armor: Overlapping, Structure, and Mechanical Properties of the Keratinous Scales
,”
Acta Biomater.
,
41
, pp.
60
74
.
77.
Chon
,
M.
,
Daly
,
M.
,
Wang
,
B.
,
Xiao
,
X.
,
Zaheri
,
A.
,
Meyers
,
M.
, and
Espinosa
,
H.
,
2017
, “
Lamellae Spatial Distribution Modulates Fracture Behavior and Toughness of African Pangolin Scales
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
30
37
.
78.
Jung
,
J.
,
Naleway
,
S.
,
Yaraghi
,
N.
,
Herrera
,
S.
,
Sherman
,
V.
,
Bushong
,
E.
,
Ellisman
,
M.
,
Kisailus
,
D.
, and
McKittrick
,
J.
,
2016
, “
Structural Analysis of the Tongue and Hyoid Apparatus in a Woodpecker
,”
Acta Biomater.
,
37
, pp.
1
13
.
79.
Haupt
,
A.
, and
Alstin
,
T.
,
2022
, “Hövding: The World’s Safest Bicycle Helmet isn’t a Helmet,” https://hovding.com/
80.
Liu
,
T.
,
Hou
,
S.
,
Nguyen
,
X.
, and
Han
,
X.
,
2017
, “
Energy Absorption Characteristics of Sandwich Structures With Composite Sheets and Bio Coconut Core
,”
Compos. B. Eng.
,
114
, pp.
328
338
.
81.
Conway
,
K.
,
Kunka
,
C.
,
White
,
B.
,
Pataky
,
G.
, and
Boyce
,
B.
,
2021
, “
Increasing Fracture Toughness via Architected Porosity
,”
Mater. Des.
,
205
, p.
109696
.
82.
Piland
,
S.
,
Gould
,
T.
,
Jesunathadas
,
M.
,
Wiggins
,
J.
,
McNair
,
O.
, and
Caswell
,
S.
,
2019
, “Chapter 3—Protective Helmets in Sports,”
Materials in Sports Equipment
, 2nd ed.,
A
Subic
, ed.,
Woodhead Publishing
, pp.
71
121
.
83.
Benedetti
,
M.
,
du Plessis
,
A.
,
Ritchie
,
R. O.
,
Dallago
,
M.
,
Razavi
,
S. M.
, and
Berto
,
F.
,
2021
, “
Architected Cellular Materials: A Review on Their Mechanical Properties Towards Fatigue-Tolerant Design and Fabrication
,”
Mater. Sci. Eng. R Rep.
,
144
, p.
100606
.
84.
Williams
,
J.
, and
Starke
,
E.
,
2003
, “
Progress in Structural Materials for Aerospace systems11The Golden Jubilee Issue—Selected Topics in Materials Science and Engineering: Past, Present and Future, Edited by S. Suresh
,”
Acta Mater.
,
51
(
19
), pp.
5775
5799
.
85.
Wong
,
J.
,
Ryan
,
L.
, and
Kim
,
I.
,
2018
, “
Design Optimization of Aircraft Landing Gear Assembly Under Dynamic Loading
,”
Struct. Multidiscipl. Optim.
,
57
(
3
), pp.
1357
1375
.
86.
Glockner Peter
,
G.
,
1973
, “
Symmetry in Structural Mechanics
,”
J. Struct. Div.
,
99
(
1
), pp.
71
89
.
87.
Dell’Anno
,
G.
,
Treiber
,
J.
, and
Partridge
,
I. K.
,
2016
, “
Manufacturing of Composite Parts Reinforced Through-Thickness by Tufting
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
262
272
.
88.
Carozzi
,
F.
,
Bellini
,
A.
,
D'Antino
,
T.
,
de Felice
,
G.
,
Focacci
,
F.
,
Hojdys
,
Ł
,
Laghi
,
L.
, et al
,
2017
, “
Experimental Investigation of Tensile and Bond Properties of Carbon-FRCM Composites for Strengthening Masonry Elements
,”
Compos. B. Eng.
,
128
, pp.
100
119
.
89.
Xue
,
J.
,
Niu
,
Y.
,
Gong
,
M.
,
Shi
,
R.
,
Chen
,
D.
,
Zhang
,
L.
, and
Lvov
,
Y.
,
2015
, “
Electrospun Microfiber Membranes Embedded With Drug-Loaded Clay Nanotubes for Sustained Antimicrobial Protection
,”
ACS Nano
,
9
(
2
), pp.
1600
1612
.
90.
Badiche
,
X.
,
Forest
,
S.
,
Guibert
,
T.
,
Bienvenu
,
Y.
,
Bartout
,
J. D.
,
Ienny
,
P.
,
Croset
,
M.
, and
Bernet
,
H.
,
2000
, “
Mechanical Properties and Non-homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials
,”
Mater. Sci. Eng. A
,
289
(
1
), pp.
276
288
.
91.
Nakatsuka
,
A.
, and
Yamamoto
,
L.
,
2014
, “
External Foam Layers to Football Helmets Reduce Head Impact Severity
,”
Hawaii J. Med. Public Health
,
73
(
8
), pp.
256
261
.
92.
Sauser
,
B.
,
2007
, “
A Helmet That Detects Hard Hits
,” www.technologyreview.com/2007/09/10/223860/a-helmet-that-detects-hard-hits/
93.
Verger
,
R.
,
2018
, “
This New Bike Helmet Can Automatically Call for Help If You Crash
,” https://www.popsci.com/bike-helmet-crash-detection/
94.
Patel
,
P.
,
2018
, “
Entrepreneur Rethinks Lithium-Ion Batteries With an Eye Toward Storing Renewable Energy
,” cen.acs.org/materials/energy-storage/Entrepreneur-rethinks-lithium-ion-batteries/96/i29
95.
Gurdjian
,
E.
,
Webster
,
J.
, and
Lissner
,
H.
,
1950
, “
The Mechanism of Skull Fracture
,”
Radiology
,
54
(
3
), pp.
313
339
.
96.
Viano
,
D.
,
Casson
,
I.
, and
Pellman
,
E.
,
2007
, “
Concussion in Professional Football: Biomechanics of the Struck Player—Part 14
,”
Neurosurgery
,
61
(
2
), pp.
313
328
.
97.
Viano
,
D.
,
1998
, “
Head Impact Biomechanics in Sport
,”
Proc. IUTAM Proceedings on Impact Biomechanics: From Fundamental Insights to Applications
,
Tempe, AZ
,
Nov. 2–4
,
Springer
, pp.
121
130
.
98.
Melvin
,
J.
,
Baron
,
K.
,
Little
,
W.
,
Gideon
,
T.
, and
Pierce
,
J.
,
1998
, “
Biomechanical Analysis of Indy Race Car Crashes
,”
SAE Trans.
,
107
(
6
), pp.
2872
2891
.
99.
Prabhu
,
R.
,
Horstemeyer
,
M.
, and
Rush
,
G.
,
2017
, “
Shock Wave Mitigating Helmets
,” U. S. Patent, ed.USA.
100.
Maity
,
P.
, and
Tekalur
,
S.
,
2011
, “
Finite Element Analysis of Ramming in Ovis Canadensis
,”
ASME J. Biomech. Eng.
,
133
(
2
), p. 021009.
101.
Trim
,
M.
,
Horstemeyer
,
M.
,
Rhee
,
H.
,
El Kadiri
,
H.
,
Williams
,
L.
,
Liao
,
J.
,
Walters
,
K.
,
McKittrick
,
J.
, and
Park
,
S.
,
2011
, “
The Effects of Water and Microstructure on the Mechanical Properties of Bighorn Sheep (Ovis Canadensis) Horn Keratin
,”
Acta Biomater.
,
7
(
3
), pp.
1228
1240
.
102.
Farke
,
A.
,
2008
, “
Frontal Sinuses and Head-Butting in Goats: A Finite Element Analysis
,”
J. Exp. Biol.
,
211
(
19
), pp.
3085
3094
.
103.
Oda
,
J.
,
Sakamoto
,
J.
, and
Sakano
,
K.
,
2006
, “
Mechanical Evaluation of the Skeletal Structure and Tissue of the Woodpecker and Its Shock Absorbing System
,”
JSME Int. J. Ser. A
,
49
(
3
), pp.
390
396
.
104.
Yoon
,
S.
, and
Park
,
S.
,
2011
, “
A Mechanical Analysis of Woodpecker Drumming and Its Application to Shock-Absorbing Systems
,”
Bioinspir. Biomim.
,
6
(
1
), p.
016003
.
105.
Bright
,
J.
, and
Rayfield
,
E.
,
2011
, “
Sensitivity and Ex Vivo Validation of Finite Element Models of the Domestic pig Cranium
,”
J. Anat.
,
219
(
4
), pp.
456
471
.
106.
Hogg
,
D.
,
1984
, “
The Development of Pneumatisation in the Postcranial Skeleton of the Domestic Fowl
,”
J. Anat.
,
139
(
1
), p.
105
.
107.
Tombolato
,
L.
,
Novitskaya
,
E.
,
Chen
,
P.
,
Sheppard
,
F.
, and
McKittrick
,
J.
,
2010
, “
Microstructure, Elastic Properties and Deformation Mechanisms of Horn Keratin
,”
Acta Biomater.
,
6
(
2
), pp.
319
330
.
108.
Cohen
,
H.
,
2013
, “
Ballistic Lightweight Ceramic Armor With Cross-pellets
,”
U. S. Patent
, ed.
USA
, p.
14
.
109.
Liu
,
P.
,
Zhu
,
D.
,
Yao
,
Y.
,
Wang
,
J.
, and
Bui
,
T.
,
2016
, “
Numerical Simulation of Ballistic Impact Behavior of Bio-inspired Scale-Like Protection System
,”
Mater. Des.
,
99
, pp.
201
210
.
110.
Hanuliak
,
A.
,
Havlik
,
M.
, and
Matl
,
R.
,
2019
, “
Helmet Damping System
,”
Czechia
.
111.
Traugutt
,
N.
,
Mistry
,
D.
,
Luo
,
C.
,
Yu
,
K.
,
Ge
,
Q.
, and
Yakacki
,
C.
,
2020
, “
Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing
,”
Adv. Mater.
,
32
(
28
), p.
2000797
.
112.
Merkel
,
D.
,
Shaha
,
R.
,
Yakacki
,
C.
, and
Frick
,
C.
,
2019
, “
Mechanical Energy Dissipation in Polydomain Nematic Liquid Crystal Elastomers in Response to Oscillating Loading
,”
Polymer
,
166
, pp.
148
154
.
113.
Luo
,
C.
,
Chung
,
C.
,
Traugutt
,
N.
,
Yakacki
,
C.
,
Long
,
K.
, and
Yu
,
K.
,
2021
, “
3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
12698
12708
.
114.
Mills
,
S.
,
Young
,
T.
,
Chatham
,
L.
,
Poddar
,
S.
,
Carpenter
,
R.
, and
Yakacki
,
C.
,
2021
, “
Effect of Foam Densification and Impact Velocity on the Performance of a Football Helmet Using Computational Modeling
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
1
), pp.
21
32
.
115.
Bailes
,
J.
,
Petraglia
,
A.
,
Omalu
,
B.
,
Nauman
,
E.
, and
Talavage
,
T.
,
2013
, “
Role of Subconcussion in Repetitive Mild Traumatic Brain Injury: A Review
,”
J. Neurosurg.
,
119
(
5
), pp.
1235
1245
.
116.
Thielen
,
M.
,
Schmitt
,
C.
,
Eckert
,
S.
,
Speck
,
T.
, and
Seidel
,
R.
,
2013
, “
Structure-Function Relationship of the Foam-Like Pomelo Peel (Citrus Maxima): An Inspiration for the Development of Biomimetic Damping Materials With High Energy Dissipation
,”
Bioinspir. Biomim.
,
8
(
2
), p.
025001
.
117.
Grunenfelder
,
L.
,
Suksangpanya
,
N.
,
Salinas
,
C.
,
Milliron
,
G.
,
Yaraghi
,
N.
,
Herrera
,
S.
,
Evans-Lutterodt
,
K.
,
Nutt
,
S. R.
,
Zavattieri
,
P.
, and
Kisailus
,
D.
,
2014
, “
Bio-Inspired Impact-Resistant Composites
,”
Acta Biomater.
,
10
(
9
), pp.
3997
4008
.
118.
Wu
,
Y.
,
Liu
,
Q.
,
Fu
,
J.
,
Li
,
Q.
, and
Hui
,
D.
,
2017
, “
Dynamic Crash Responses of Bio-inspired Aluminum Honeycomb Sandwich Structures With CFRP Panels
,”
Compos. B. Eng.
,
121
, pp.
122
133
.
119.
Yang
,
W.
,
Quan
,
H.
,
Meyers
,
M.
, and
Ritchie
,
R.
,
2019
, “
Arapaima Fish Scale: One of the Toughest Flexible Biological Materials
,”
Matter
,
1
(
6
), pp.
1557
1566
.
120.
Yin
,
K.
,
2011
, “
Figure: Coconut Layers (23KB)
,”
Wikipedia, Wikipedia Commons
.
You do not currently have access to this content.