Abstract

Decisions in engineering design are closely tied to the 3D shape of the product. Limited availability of 3D shape data and expensive annotation present key challenges for using artificial intelligence in product design and development. In this work, we explore transfer learning strategies to improve the data-efficiency of geometric reasoning models based on deep neural networks as used for tasks such as shape retrieval and design synthesis. We address the utilization of problem-related and un-annotated 3D data to compensate for small data volumes. Our experiments show promising results for knowledge transfer on mechanical component benchmarks.

References

1.
Hennigh
,
O.
,
Narasimhan
,
S.
,
Nabian
,
M. A.
,
Subramaniam
,
A.
,
Tangsali
,
K.
,
Rietmann
,
M.
,
Ferrandis
,
J. d. A.
,
Byeon
,
W.
,
Fang
,
Z.
, and
Choudhry
,
S.
,
2020
, “
Nvidia SimnetTM: An Ai-Accelerated Multi-Physics Simulation Framework
,”
arXiv:2012.07938
.
2.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121001
.
3.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
6000
6010
.
4.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
Preprint
.
5.
Radford
,
A.
,
Wu
,
J.
,
Child
,
R.
,
Luan
,
D.
,
Amodei
,
D.
, and
Sutskever
,
I.
,
2019
,
OpenAI blog
1
(
8
), p.
9
.
6.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
7.
Chen
,
W.
, and
Fuge
,
M.
,
2019
, “
Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111403
.
8.
Kazi
,
R. H.
,
Grossman
,
T.
,
Cheong
,
H.
,
Hashemi
,
A.
, and
Fitzmaurice
,
G. W.
,
2017
, “
Dreamsketch: Early Stage 3D Design Explorations With Sketching and Generative Design
,”
UIST '17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
,
Québec, Canada
,
Oct. 22–25
, Vol. 14, pp.
401
414
.
9.
Muraleedharan
,
L. P.
,
Kannan
,
S. S.
, and
Muthuganapathy
,
R.
,
2019
, “
Autoencoder-Based Part Clustering for Part-in-Whole Retrieval of CAD Models
,”
Comput. Graph.
,
81
(
9
), pp.
41
51
.
10.
Angrish
,
A.
,
Bharadwaj
,
A.
, and
Starly
,
B.
,
2021
, “
Mvcnn++: Computer-Aided Design Model Shape Classification and Retrieval Using Multi-view Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011001
.
11.
Chan
,
S. L.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing
,”
J. Manuf. Syst.
,
46
(
14
), pp.
115
126
.
12.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
25
), pp.
157
169
.
13.
He
,
R.
, and
McAuley
,
J.
,
2016
, “
Ups and Downs: Modeling the Visual Evolution of Fashion Trends With One-Class Collaborative Filtering
,”
Proceedings of the 25th International Conference on World Wide Web
,
Montreal, Canada
,
Apr. 11–15
, pp. 507–517..
14.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
2009 IEEE Conference on Computer Vision and Pattern Recognition
,
Miami, FL
,
June 20–25
, IEEE, pp.
248
255
.
15.
Sun
,
C.
,
Shrivastava
,
A.
,
Singh
,
S.
, and
Gupta
,
A.
,
2017
, “
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
, pp.
843
852
.
16.
Mahajan
,
D.
,
Girshick
,
R.
,
Ramanathan
,
V.
,
He
,
K.
,
Paluri
,
M.
,
Li
,
Y.
,
Bharambe
,
A.
, and
Van Der Maaten
,
L.
,
2018
, “
Exploring the Limits of Weakly Supervised Pretraining
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
181
196
.
17.
Koch
,
S.
,
Matveev
,
A.
,
Jiang
,
Z.
,
Williams
,
F.
,
Artemov
,
A.
,
Burnaev
,
E.
,
Alexa
,
M.
,
Zorin
,
D.
, and
Panozzo
,
D.
,
2019
, “
Abc: A Big CAD Model Dataset for Geometric Deep Learning
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
9601
9611
.
18.
Donoho
,
D. L.
,
2000
, “
High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,”
AMS Math Challenges Lect.
,
1
(
2000
), p.
32
.
19.
Dekhtiar
,
J.
,
Durupt
,
A.
,
Bricogne
,
M.
,
Eynard
,
B.
,
Rowson
,
H.
, and
Kiritsis
,
D.
,
2018
, “
Deep Learning for Big Data Applications in CAD and PLM—Research Review, Opportunities and Case Study
,”
Comput. Ind.
,
100
, pp.
227
243
.
20.
Wu
,
Z.
,
Song
,
S.
,
Khosla
,
A.
,
Yu
,
F.
,
Zhang
,
L.
,
Tang
,
X.
, and
Xiao
,
J.
,
2015
, “
3d Shapenets: A Deep Representation for Volumetric Shapes
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
1912
1920
.
21.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
,
Savarese
,
S.
, et al
,
2015
, “
Shapenet: An Information-Rich 3D Model Repository
,”
Preprint arXiv:1512.03012
.
22.
Pan
,
S. J.
, and
Yang
,
Q.
,
2009
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
23.
Howard
,
J.
, and
Ruder
,
S.
,
2018
, “
Universal Language Model Fine-Tuning for Text Classification
,”
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
,
Melbourne, Australia
,
July 15–20
, pp.
328
339
.
24.
Yang
,
Z.
,
Dai
,
Z.
,
Yang
,
Y.
,
Carbonell
,
J.
,
Salakhutdinov
,
R. R.
, and
Le
,
Q. V.
,
2019
, “
Xlnet: Generalized Autoregressive Pretraining for Language Understanding
,”
Adv. Neural Inf. Process. Syst.
,
32
, pp.
5753
5763
.
25.
Lample
,
G.
, and
Conneau
,
A.
,
2019
, “
Cross-Lingual Language Model Pretraining
,”
preprint
.
26.
Girshick
,
R.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Malik
,
J.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Columbus, OH
,
June 23–28
, pp.
580
587
.
27.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
3431
3440
.
28.
Kornblith
,
S.
,
Shlens
,
J.
, and
Le
,
Q. V.
,
2019
, “
Do Better Imagenet Models Transfer Better?
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 15–20
, pp.
2661
2671
.
29.
He
,
K.
,
Girshick
,
R.
, and
Dollár
,
P.
,
2019
, “
Rethinking Imagenet Pre-training
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
4918
4927
.
30.
Rao
,
Y.
,
Lu
,
J.
, and
Zhou
,
J.
,
2020
, “
Global–Local Bidirectional Reasoning for Unsupervised Representation Learning of 3d Point Clouds
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 14–19
, pp.
5376
5385
.
31.
Yang
,
Y.
,
Feng
,
C.
,
Shen
,
Y.
, and
Tian
,
D.
,
2018
, “
Foldingnet: Point Cloud Auto-Encoder Via Deep Grid Deformation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–22
, pp.
206
215
.
32.
Zhao
,
Y.
,
Birdal
,
T.
,
Deng
,
H.
, and
Tombari
,
F.
,
2019
, “
3D Point Capsule Networks
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
1009
1018
.
33.
Zoph
,
B.
,
Ghiasi
,
G.
,
Lin
,
T.-Y.
,
Cui
,
Y.
,
Liu
,
H.
,
Cubuk
,
E. D.
, and
Le
,
Q.
,
2020
, “
Rethinking Pre-training and Self-Training
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
3833
3845
.
34.
Mikolov
,
T.
,
Chen
,
K.
,
Corrado
,
G.
, and
Dean
,
J.
,
2013
, “Efficient Estimation of Word Representations in Vector Space,”
Preprint arXiv:1301.3781
.
35.
Peters
,
M.
,
Neumann
,
M.
,
Iyyer
,
M.
,
Gardner
,
M.
,
Clark
,
C.
,
Lee
,
K.
, and
Zettlemoyer
,
L.
,
2018
, “
Deep Contextualized Word Representations
,”
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
,
New Orleans, LA
,
June 1–6
, pp.
2227
2237
.
36.
Larsson
,
G.
,
Maire
,
M.
, and
Shakhnarovich
,
G.
,
2017
, “
Colorization as a Proxy Task for Visual Understanding
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
6874
6883
.
37.
Pathak
,
D.
,
Krahenbuhl
,
P.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Efros
,
A. A.
,
2016
, “
Context Encoders: Feature Learning by Inpainting
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
2536
2544
.
38.
Gidaris
,
S.
,
Singh
,
P.
, and
Komodakis
,
N.
,
2018
, “
Unsupervised Representation Learning by Predicting Image Rotations
,”
International Conference on Learning Representations
.
39.
Zhang
,
R.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
1058
1067
.
40.
Henaff
,
O.
,
2020
, “
Data-Efficient Image Recognition With Contrastive Predictive Coding
,”
International Conference on Machine Learning, PMLR
,
Vienna, Austria
,
July 13–18
, pp.
4182
4192
.
41.
Tian
,
Y.
,
Krishnan
,
D.
, and
Isola
,
P.
,
2020
, “
Contrastive Multiview Coding
,”
ECCV 2020: 16th European Conference
,
Glasgow, UK
,
Aug. 23–28
.
42.
Goyal
,
P.
,
Mahajan
,
D.
,
Gupta
,
A.
, and
Misra
,
I.
,
2019
, “
Scaling and Benchmarking Self-Supervised Visual Representation Learning
,”
International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
6391
6400
.
43.
Newell
,
A.
, and
Deng
,
J.
,
2020
, “
How Useful is Self-Supervised Pretraining for Visual Tasks?
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual
,
June 14–19
, pp.
7345
7354
.
44.
Xie
,
S.
,
Gu
,
J.
,
Guo
,
D.
,
Qi
,
C. R.
,
Guibas
,
L.
, and
Litany
,
O.
,
2020
, “
Pointcontrast: Unsupervised Pre-Training for 3d Point Cloud Understanding
,”
European Conference on Computer Vision
,
Virtual
,
Aug. 23–28
, Springer, pp.
574
591
.
45.
Choy
,
C.
,
Park
,
J.
, and
Koltun
,
V.
,
2019
, “
Fully Convolutional Geometric Features
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
8958
8966
.
46.
Qi
,
C. R.
,
Yi
,
L.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
Pointnet++ Deep Hierarchical Feature Learning on Point Sets in a Metric Space
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
5105
5114
.
47.
Kim
,
S.
,
Chi
,
H.-G.
,
Hu
,
X.
,
Huang
,
Q.
, and
Ramani
,
K.
,
2020
, “
A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,”
European Conference on Computer Vision
.
48.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inf. Process. Syst.
,
32
, pp.
8026
8037
.
49.
Kingma
,
D.
, and
Lei Ba
,
J.
,
2019
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
50.
Van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
(
11
).
You do not currently have access to this content.