Abstract
Decisions in engineering design are closely tied to the 3D shape of the product. Limited availability of 3D shape data and expensive annotation present key challenges for using artificial intelligence in product design and development. In this work, we explore transfer learning strategies to improve the data-efficiency of geometric reasoning models based on deep neural networks as used for tasks such as shape retrieval and design synthesis. We address the utilization of problem-related and un-annotated 3D data to compensate for small data volumes. Our experiments show promising results for knowledge transfer on mechanical component benchmarks.
Issue Section:
Design Automation
References
1.
Hennigh
, O.
, Narasimhan
, S.
, Nabian
, M. A.
, Subramaniam
, A.
, Tangsali
, K.
, Rietmann
, M.
, Ferrandis
, J. d. A.
, Byeon
, W.
, Fang
, Z.
, and Choudhry
, S.
, 2020
, “Nvidia SimnetTM: An Ai-Accelerated Multi-Physics Simulation Framework
,”arXiv:2012.07938
. 2.
Sarkar
, S.
, Mondal
, S.
, Joly
, M.
, Lynch
, M. E.
, Bopardikar
, S. D.
, Acharya
, R.
, and Perdikaris
, P.
, 2019
, “Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,” ASME J. Mech. Des.
, 141
(12
), p. 121001
. 3.
Vaswani
, A.
, Shazeer
, N.
, Parmar
, N.
, Uszkoreit
, J.
, Jones
, L.
, Gomez
, A. N.
, Kaiser
, Ł.
, and Polosukhin
, I.
, 2017
, “Attention Is All You Need
,” Proceedings of the 31st International Conference on Neural Information Processing Systems
, Long Beach, CA
, Dec. 4–9
, pp. 6000
–6010
.4.
Devlin
, J.
, Chang
, M.-W.
, Lee
, K.
, and Toutanova
, K.
, 2018
, “Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,” Preprint
. 5.
Radford
, A.
, Wu
, J.
, Child
, R.
, Luan
, D.
, Amodei
, D.
, and Sutskever
, I.
, 2019
, OpenAI blog
1
(8
), p. 9
.6.
Oh
, S.
, Jung
, Y.
, Kim
, S.
, Lee
, I.
, and Kang
, N.
, 2019
, “Deep Generative Design: Integration of Topology Optimization and Generative Models
,” ASME J. Mech. Des.
, 141
(11
), p. 111405
. 7.
Chen
, W.
, and Fuge
, M.
, 2019
, “Synthesizing Designs With Interpart Dependencies Using Hierarchical Generative Adversarial Networks
,” ASME J. Mech. Des.
, 141
(11
), p. 111403
. 8.
Kazi
, R. H.
, Grossman
, T.
, Cheong
, H.
, Hashemi
, A.
, and Fitzmaurice
, G. W.
, 2017
, “Dreamsketch: Early Stage 3D Design Explorations With Sketching and Generative Design
,” UIST '17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
, Québec, Canada
, Oct. 22–25
, Vol. 14, pp. 401
–414
.9.
Muraleedharan
, L. P.
, Kannan
, S. S.
, and Muthuganapathy
, R.
, 2019
, “Autoencoder-Based Part Clustering for Part-in-Whole Retrieval of CAD Models
,” Comput. Graph.
, 81
(9
), pp. 41
–51
. 10.
Angrish
, A.
, Bharadwaj
, A.
, and Starly
, B.
, 2021
, “Mvcnn++: Computer-Aided Design Model Shape Classification and Retrieval Using Multi-view Convolutional Neural Networks
,” ASME J. Comput. Inf. Sci. Eng.
, 21
(1
), p. 011001
. 11.
Chan
, S. L.
, Lu
, Y.
, and Wang
, Y.
, 2018
, “Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing
,” J. Manuf. Syst.
, 46
(14
), pp. 115
–126
. 12.
Tao
, F.
, Qi
, Q.
, Liu
, A.
, and Kusiak
, A.
, 2018
, “Data-Driven Smart Manufacturing
,” J. Manuf. Syst.
, 48
(25
), pp. 157
–169
. 13.
He
, R.
, and McAuley
, J.
, 2016
, “Ups and Downs: Modeling the Visual Evolution of Fashion Trends With One-Class Collaborative Filtering
,” Proceedings of the 25th International Conference on World Wide Web
, Montreal, Canada
, Apr. 11–15
, pp. 507–517..14.
Deng
, J.
, Dong
, W.
, Socher
, R.
, Li
, L.-J.
, Li
, K.
, and Fei-Fei
, L.
, 2009
, “Imagenet: A Large-Scale Hierarchical Image Database
,” 2009 IEEE Conference on Computer Vision and Pattern Recognition
, Miami, FL
, June 20–25
, IEEE, pp. 248
–255
.15.
Sun
, C.
, Shrivastava
, A.
, Singh
, S.
, and Gupta
, A.
, 2017
, “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
,” 2017 IEEE International Conference on Computer Vision (ICCV)
, Venice, Italy
, Oct. 22–29
, pp. 843
–852
.16.
Mahajan
, D.
, Girshick
, R.
, Ramanathan
, V.
, He
, K.
, Paluri
, M.
, Li
, Y.
, Bharambe
, A.
, and Van Der Maaten
, L.
, 2018
, “Exploring the Limits of Weakly Supervised Pretraining
,” Proceedings of the European Conference on Computer Vision (ECCV)
, Munich, Germany
, Sept. 8–14
, pp. 181
–196
.17.
Koch
, S.
, Matveev
, A.
, Jiang
, Z.
, Williams
, F.
, Artemov
, A.
, Burnaev
, E.
, Alexa
, M.
, Zorin
, D.
, and Panozzo
, D.
, 2019
, “Abc: A Big CAD Model Dataset for Geometric Deep Learning
,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, Long Beach, CA
, June 15–20
, pp. 9601
–9611
.18.
Donoho
, D. L.
, 2000
, “High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,” AMS Math Challenges Lect.
, 1
(2000
), p. 32
.19.
Dekhtiar
, J.
, Durupt
, A.
, Bricogne
, M.
, Eynard
, B.
, Rowson
, H.
, and Kiritsis
, D.
, 2018
, “Deep Learning for Big Data Applications in CAD and PLM—Research Review, Opportunities and Case Study
,” Comput. Ind.
, 100
, pp. 227
–243
.20.
Wu
, Z.
, Song
, S.
, Khosla
, A.
, Yu
, F.
, Zhang
, L.
, Tang
, X.
, and Xiao
, J.
, 2015
, “3d Shapenets: A Deep Representation for Volumetric Shapes
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Boston, MA
, June 7–12
, pp. 1912
–1920
.21.
Chang
, A. X.
, Funkhouser
, T.
, Guibas
, L.
, Hanrahan
, P.
, Huang
, Q.
, Li
, Z.
, Savarese
, S.
, et al, 2015
, “Shapenet: An Information-Rich 3D Model Repository
,” Preprint arXiv:1512.03012
. 22.
Pan
, S. J.
, and Yang
, Q.
, 2009
, “A Survey on Transfer Learning
,” IEEE Trans. Knowl. Data Eng.
, 22
(10
), pp. 1345
–1359
. 23.
Howard
, J.
, and Ruder
, S.
, 2018
, “Universal Language Model Fine-Tuning for Text Classification
,” Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
, Melbourne, Australia
, July 15–20
, pp. 328
–339
.24.
Yang
, Z.
, Dai
, Z.
, Yang
, Y.
, Carbonell
, J.
, Salakhutdinov
, R. R.
, and Le
, Q. V.
, 2019
, “Xlnet: Generalized Autoregressive Pretraining for Language Understanding
,” Adv. Neural Inf. Process. Syst.
, 32
, pp. 5753
–5763
.25.
Lample
, G.
, and Conneau
, A.
, 2019
, “Cross-Lingual Language Model Pretraining
,” preprint
. 26.
Girshick
, R.
, Donahue
, J.
, Darrell
, T.
, and Malik
, J.
, 2014
, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Columbus, OH
, June 23–28
, pp. 580
–587
.27.
Long
, J.
, Shelhamer
, E.
, and Darrell
, T.
, 2015
, “Fully Convolutional Networks for Semantic Segmentation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Boston, MA
, June 7–12
, pp. 3431
–3440
.28.
Kornblith
, S.
, Shlens
, J.
, and Le
, Q. V.
, 2019
, “Do Better Imagenet Models Transfer Better?
” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, Long Beach, CA
, June 15–20
, pp. 2661
–2671
.29.
He
, K.
, Girshick
, R.
, and Dollár
, P.
, 2019
, “Rethinking Imagenet Pre-training
,” Proceedings of the IEEE/CVF International Conference on Computer Vision
, Seoul, South Korea
, Oct. 27–Nov. 2
, pp. 4918
–4927
.30.
Rao
, Y.
, Lu
, J.
, and Zhou
, J.
, 2020
, “Global–Local Bidirectional Reasoning for Unsupervised Representation Learning of 3d Point Clouds
,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, Virtual
, June 14–19
, pp. 5376
–5385
.31.
Yang
, Y.
, Feng
, C.
, Shen
, Y.
, and Tian
, D.
, 2018
, “Foldingnet: Point Cloud Auto-Encoder Via Deep Grid Deformation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Salt Lake City, UT
, June 18–22
, pp. 206
–215
.32.
Zhao
, Y.
, Birdal
, T.
, Deng
, H.
, and Tombari
, F.
, 2019
, “3D Point Capsule Networks
,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, Long Beach, CA
, June 16–20
, pp. 1009
–1018
.33.
Zoph
, B.
, Ghiasi
, G.
, Lin
, T.-Y.
, Cui
, Y.
, Liu
, H.
, Cubuk
, E. D.
, and Le
, Q.
, 2020
, “Rethinking Pre-training and Self-Training
,” Adv. Neural Inf. Process. Syst.
, 33
, pp. 3833
–3845
.34.
Mikolov
, T.
, Chen
, K.
, Corrado
, G.
, and Dean
, J.
, 2013
, “Efficient Estimation of Word Representations in Vector Space,” Preprint arXiv:1301.3781
. 35.
Peters
, M.
, Neumann
, M.
, Iyyer
, M.
, Gardner
, M.
, Clark
, C.
, Lee
, K.
, and Zettlemoyer
, L.
, 2018
, “Deep Contextualized Word Representations
,” Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
, New Orleans, LA
, June 1–6
, pp. 2227
–2237
.36.
Larsson
, G.
, Maire
, M.
, and Shakhnarovich
, G.
, 2017
, “Colorization as a Proxy Task for Visual Understanding
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI
, July 21–26
, pp. 6874
–6883
.37.
Pathak
, D.
, Krahenbuhl
, P.
, Donahue
, J.
, Darrell
, T.
, and Efros
, A. A.
, 2016
, “Context Encoders: Feature Learning by Inpainting
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV
, June 26–July 1
, pp. 2536
–2544
.38.
Gidaris
, S.
, Singh
, P.
, and Komodakis
, N.
, 2018
, “Unsupervised Representation Learning by Predicting Image Rotations
,” International Conference on Learning Representations
.39.
Zhang
, R.
, Isola
, P.
, and Efros
, A. A.
, 2017
, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Honolulu, HI
, July 21–26
, pp. 1058
–1067
.40.
Henaff
, O.
, 2020
, “Data-Efficient Image Recognition With Contrastive Predictive Coding
,” International Conference on Machine Learning, PMLR
, Vienna, Austria
, July 13–18
, pp. 4182
–4192
.41.
Tian
, Y.
, Krishnan
, D.
, and Isola
, P.
, 2020
, “Contrastive Multiview Coding
,” ECCV 2020: 16th European Conference
, Glasgow, UK
, Aug. 23–28
.42.
Goyal
, P.
, Mahajan
, D.
, Gupta
, A.
, and Misra
, I.
, 2019
, “Scaling and Benchmarking Self-Supervised Visual Representation Learning
,” International Conference on Computer Vision
, Seoul, South Korea
, Oct. 27–Nov. 2
, pp. 6391
–6400
.43.
Newell
, A.
, and Deng
, J.
, 2020
, “How Useful is Self-Supervised Pretraining for Visual Tasks?
” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
, Virtual
, June 14–19
, pp. 7345
–7354
.44.
Xie
, S.
, Gu
, J.
, Guo
, D.
, Qi
, C. R.
, Guibas
, L.
, and Litany
, O.
, 2020
, “Pointcontrast: Unsupervised Pre-Training for 3d Point Cloud Understanding
,” European Conference on Computer Vision
, Virtual
, Aug. 23–28
, Springer, pp. 574
–591
.45.
Choy
, C.
, Park
, J.
, and Koltun
, V.
, 2019
, “Fully Convolutional Geometric Features
,” Proceedings of the IEEE/CVF International Conference on Computer Vision
, Seoul, South Korea
, Oct. 27–Nov. 2
, pp. 8958
–8966
.46.
Qi
, C. R.
, Yi
, L.
, Su
, H.
, and Guibas
, L. J.
, 2017
, “Pointnet++ Deep Hierarchical Feature Learning on Point Sets in a Metric Space
,” Proceedings of the 31st International Conference on Neural Information Processing Systems
, Long Beach, CA
, Dec. 4–9
, pp. 5105
–5114
.47.
Kim
, S.
, Chi
, H.-G.
, Hu
, X.
, Huang
, Q.
, and Ramani
, K.
, 2020
, “A Large-Scale Annotated Mechanical Components Benchmark for Classification and Retrieval Tasks With Deep Neural Networks
,” European Conference on Computer Vision
.48.
Paszke
, A.
, Gross
, S.
, Massa
, F.
, Lerer
, A.
, Bradbury
, J.
, Chanan
, G.
, Killeen
, T.
, et al, 2019
, “Pytorch: An Imperative Style, High-Performance Deep Learning Library
,” Adv. Neural Inf. Process. Syst.
, 32
, pp. 8026
–8037
.49.
Kingma
, D.
, and Lei Ba
, J.
, 2019
, “Adam: A Method for Stochastic Optimization
,” 3rd International Conference on Learning Representations
, San Diego, CA
, May 7–9
.50.
Van der Maaten
, L.
, and Hinton
, G.
, 2008
, “Visualizing Data Using T-SNE
,” J. Mach. Learn. Res.
, 9
(11
).Copyright © 2021 by ASME
You do not currently have access to this content.