Abstract

This paper presents VISION (Visual Interaction tool for Seeking Inspiration based on Nonnegative Matrix Factorization), a computational design-by-analogy (DbA) tool that enables designers to visually explore a space of analogical inspiration for creative idea generation. While many currently available DbA tools use a query-based approach for retrieving analogies (i.e., input keywords or functions to return a set of relevant results), VISION allows designers to retrieve a collection of design analogies that are related to topics of interest and explore a space of potential inspiration, the way one would gather books of particular topics from multiple shelves at the library to find potential resources. Two cognitive engineering design studies were conducted to evaluate the efficacy of VISION during the conceptual design process. In the first study, conducted in a controlled-lab setting, VISION was evaluated based on its effect on the quantity, quality, novelty, and direct physical similarity ratings of design outcomes. In the second study, conducted in a graduate engineering design class, VISION was evaluated based on designers’ abilities to retrieve analogies from different domains and analogies that are different from already existing design solutions. Studies show that VISION could provide an alternative to the query-based search that many DbA computational support systems use and open up new opportunities for designers to benefit from computationally supported analogies.

References

1.
Song
,
H.
,
Evans
,
J.
, and
Fu
,
K.
,
2020
, “
An Exploration-Based Approach to Computationally Supported Design-by-Analogy Using D3
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
4
), pp.
444
457
.
2.
Song
,
H.
, and
Fu
,
K.
,
2019
, “
Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p. 021014.
3.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.
4.
Markman
,
A.
,
Wood
,
K. L.
,
Linsey
,
J.
,
Murphy
,
J.
, and
Laux
,
J.
,
2009
,
Tools for Innovation (Supporting Innovation by Promoting Analogical Reasoning)
,
Oxford University Press
,
New York
.
5.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.
6.
Chou
,
A.
, and
Shu
,
L. H.
,
2015
, “
Using Analogies to Explain Versus Inspire Concepts
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
29
(
2
), pp.
135
146
.
7.
Davies
,
J.
,
Goel
,
A. K.
, and
Nersessian
,
N. J.
,
2009
, “
A Computational Model of Visual Analogies in Design
,”
Cogn. Syst. Res.
,
10
(
3
), pp.
204
215
.
8.
Alipour
,
L.
,
Faizi
,
M.
,
Moradi
,
A.
, and
Akrami
,
G.
,
2017
, “
The Impact of Designers’ Goals on Design-by-Analogy
,”
Des. Stud.
,
51
, pp.
1
24
.
9.
Borgianni
,
Y.
,
Maccioni
,
L.
,
Fiorineschi
,
L.
, and
Rotini
,
F.
,
2020
, “
Forms of Stimuli and Their Effects on Idea Generation in Terms of Creativity Metrics and non-Obviousness
,”
Int. J. Des. Creativity Innov.
,
8
(
3
), pp.
147
164
.
10.
Jansson
,
D.
, and
Smith
,
S.
,
1991
, “
Design Fixation
,”
Desi. Stud.
,
12
(
1
), pp.
3
11
.
11.
Chrysikou
,
E. G.
, and
Weisberg
,
R. W.
,
2005
, “
Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task
,”
J. Exp. Psychol. Learn. Mem. Cogn.
,
31
(
5
), pp.
1134
1148
.
12.
Hwang
,
D.
,
Choi
,
B.
,
Bae
,
S.
, and
Park
,
W.
,
2021
, “
Mitigating Design Fixation: A Visualization Tool for Enhancing Situation Awareness
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061402
.
13.
Leahy
,
K.
,
Daly
,
S. R.
,
Mckilligan
,
S.
, and
Seifert
,
C.
,
2020
, “
Design Fixation From Initial Examples: Provided Versus Self-Generated Ideas
,”
ASME J. Mech. Des.
,
142
(
10
), p. 101402.
14.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idean Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.
15.
Ullman
,
D.
,
2003
,
The Mechanical Design Process
, 3rd ed.,
McGraw-Hill
,
Boston, MA
, McGraw-Hill Series in Mechanical Engineering, p.
415
, xv.
16.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
85
100
.
17.
Atilola
,
O.
,
Tomko
,
M.
, and
Linsey
,
J.
,
2016
, “
The Effects of Representation on Idea Generation and Design Fixation: A Study Comparing Sketches and Function Trees
,”
Des. Stud.
,
42
, pp.
110
136
.
18.
Ezzat
,
H.
,
Agogu
,
M.
,
Le Masson
,
P.
,
Weil
,
B.
, and
Cassotti
,
M.
,
2020
, “
Specificity and Abstraction of Examples: Opposite Effects on Fixation for Creative Ideation
,”
J. Creat. Behav.
,
54
(
1
), pp.
115
122
.
19.
Koh
,
E.
,
2020
, “
Read the Full Patent or Just the Claims? Mitigating Design Fixation and Design Distraction When Reviewing Patent Documents
,”
Des. Stud.
,
68
, pp.
34
57
.
20.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p. 031006.
21.
J.
Murphy
,
2011
, “
Patent-Based Analogy Search Tool for Innovative Concept Generation
,”
Ph.D.
,
The University of Texas at Austin
,
Austin, TX
. [Online]. Available: http://hdl.handle.net/2152/ETD-UT-2011-12-4386
22.
Liu
,
L.
,
Li
,
Y.
,
Xiong
,
Y.
, and
Cavallucci
,
D.
,
2020
, “
A new Function-Based Patent Knowledge Retrieval Tool for Conceptual Design of Innovative Products
,”
Comput. Ind.
,
115
.
23.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
24.
Koch
,
S.
,
Bosch
,
H.
,
Giereth
,
M.
, and
Ertl
,
T.
,
2011
, “
Iterative Integration of Visual Insights During Scalable Patent Search and Analysis
,”
IEEE Trans. Vis. Comput. Graph.
,
17
(
5
), pp.
557
569
.
25.
Ahmed
,
S.
,
Wallace
,
K.
, and
Blessing
,
L.
,
2003
, “
Understanding the Differences Between how Novice and Experienced Designers Approach Design Tasks
,”
Res. Eng. Des.
,
14
(
1
), pp.
1
11
.
26.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K.
,
2019
, “
Computer-Aided Design Ideation Using InnoGPS
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
27.
Kim
,
J.
, and
Park
,
H.
,
2008
, “
Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons
,”
2008 Eighth IEEE International Conference on Data Mining
,
Pisa, Italy
,
Dec 15–19, 2008
, pp.
353
362
, 10.1109/ICDM.2008.149.
28.
Kim
,
J.
, and
Park
,
H.
,
2011
, “
Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons
,”
SIAM J. Sci. Comput.
,
33
(
6
), pp.
3261
3281
.
29.
Afrin
,
A.
,
Paul
,
M.
, and
Sattar
,
A.
,
2019
, “
Privacy Preserving Data Mining Using Non-Negative Matrix Factorization and Singular Value Decomposition
,”
Presented at the 2019 4th International Conference on Electrical Information and Communication Technology (EICT)
,
Khulna, Bangladesh
,
April 16, 2020
.
30.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p. 041009.
31.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p. 081004.
32.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
33.
H.
,
S.
,
Lopez
,
R.
,
Fu
,
K.
, and
Linsey
,
J.
,
2017
, “
Characterizing the Effects of Multiple Analogs and Extraneous Information for Novice Designers in Design-by-Analogy
,”
ASME J. Mech. Des.
,
140
(
3
), p. 031101.
34.
Jablokow
,
K.
,
Sonalkar
,
N.
,
Edelman
,
J.
,
Mabogunje
,
A.
, and
Leifer
,
L.
,
2019
, “
Investigating the Influence of Designers’ Cognitive Characteristics and Interaction Behaviors in Design Concept Generation
,”
ASME J. Mech. Des.
,
141
(
9
), p. 091101.
35.
Alsager Alzayed
,
M.
,
McComb
,
C.
,
Hunter
,
S.
, and
Miller
,
S.
,
2019
, “
Expanding the Solution Space in Engineering Design Education: A Simulation-Based Investigation of Product Dissection
,”
ASME J. Mech. Des.
,
141
(
3
), p. 032001.
36.
Gwet
,
K.
,
2014
, “
Handbook of Inter-Rater Reliability
,”
The Definitive Guide to Measuring the Extent of Agreement Among Raters
, 4th ed.,
Advanced Analytics, LLC
,
Gaithersburg, MD
.
37.
Wongpakaran
,
N.
,
Wongpakaran
,
T.
,
Wedding
,
D.
, and
Gwet
,
K. L.
,
2013
, “
A Comparison of Cohen's Kappa and Gwet's AC1 When Calculating Inter-Rater Reliability Coefficients: A Study Conducted With Personality Disorder Samples
,”
BMC Med. Res. Methodol.
,
13
.
38.
Casakin
,
H.
,
2004
, “
Visual Analogy as a Cognitive Strategy in the Design Process. Expert Versus Novice Performance
,”
J. Des. Res.
,
4
(
2
), pp.
197
217
.
39.
Dahl
,
D. W.
, and
Moreau
,
P.
,
2002
, “
The Influence and Value of Analogical Thinking During new Product Ideation
,”
J. Mark. Res.
,
39
(
1
), pp.
47
60
.
40.
Ozkan
,
O.
, and
Dogan
,
F.
,
2013
, “
Cognitive Strategies of Analogical Reasoning in Design: Differences Between Expert and Novice Designers
,”
Des. Stud.
,
34
(
2
), pp.
161
192
.
41.
Ahmed
,
S.
, and
Christensen
,
B. T.
,
2009
, “
An In Situ Study of Analogical Reasoning in Novice and Experienced Design Engineers
,”
ASME J. Mech. Des.
,
131
(
11
), p. 111004.
42.
Gentner
,
D.
, and
Forbus
,
K. D.
,
1991
, “
Mac/Fac—a Model of Similarity-Based Retrieval
,”
Program of the Thirteenth Annual Conference of the Cognitive Science Society
, pp.
504
-
509
. [Online]. Available: <Go to ISI>://WOS:A1991BU19D00085.
43.
Gentner
,
D.
, and
Markman
,
A.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(
1
), pp.
45
56
.
44.
Deldin
,
J. M.
, and
Schuknecht
,
M.
,
2014
, “
The AskNature Database: Enabling Solutions in Biomimetic Design
,”
Biologically Inspired Design
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London
, pp.
17
27
.
You do not currently have access to this content.