Abstract

Improving engineering design in the context of market systems requires a deep understanding of the decision-making processes of multiple interacting stakeholders and how they affect the success of new products. One key group of stakeholders in this system is consumers, who make purchase choices that directly influence each product’s market share and profits. Since real-world individual decisions are influenced by social communications, supporting product development efforts with social network analysis can enable producers to predict demand much more accurately.This article presents an agent-based modeling (ABM) framework for design for market systems analysis that incorporates social network word-of-mouth (WOM) recommendations. To investigate influences of homophily-driven WOM and network structures on consumer preferences and the prediction of market demand, the random and small-world networks are generated based on the concept of homophily to study the differences in the emergent system-level behaviors. We compare the output of the models against a similar model that excludes WOM influences, using a case study of the top-selling midsize sedans in the US automobile industry. The results show that the addition of WOM improves the ability to accurately forecast consumer demand in a statistically significant way. This suggests that producers who invest in supporting their product development efforts with design for market systems analyses that account for social networks may be able to better optimize their decision-making and increase their market success.

References

1.
Wang
,
Z.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2011
, “
Strategic Design Decisions for Uncertain Market Systems Using an Agent Based Approach
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041003
.
2.
Goldenberg
,
J.
,
Libai
,
B.
, and
Muller
,
E.
,
2001
, “
Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth
,”
Market. Lett.
,
12
(
3
), pp.
211
223
.
3.
Anderson
,
W. E.
,
1998
, “
Customer Satisfaction and Word of Mouth. Anderson EW. Customer Satisfaction and Word of Mouth
,”
J. Service Res.
,
1
(
1
), pp.
5
17
.
4.
Yang
,
S.
,
Hu
,
M.
,
Winer
,
R. S.
,
Assael
,
H.
, and
Chen
,
X.
,
2012
, “
An Empirical Study of Word-of-Mouth Generation and Consumption
,”
Articles Adv.
,
31
(
6
), pp.
1
12
.
5.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Trans. Res. Part D: Trans. Environ.
,
32
, pp.
421
434
.
6.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2016
, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Design Sci.
,
2
(
E11
).
7.
Zhang
,
T.
,
Gensler
,
S.
, and
Garcia
,
R.
,
2011
, “
A Study of the Diffusion of Alternative Fuel Vehicles: An Agent-Based Modeling Approach
,”
J. Product Innovat. Manage.
,
28
(
2
), pp.
152
168
.
8.
Borshchev
,
A.
, and
Filippov
,
A.
,
2004
, “
From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools
,”
Proceedings of the 22nd International Conference of the System Dynamics Society
,
Oxford, UK
,
July 25–29
.
9.
Wellman
,
M. P.
,
2016
, “
Putting the Agent in Agent-Based Modeling
,”
Auton. Agents Multi-Agent Syst.
,
30
(
6
), pp.
1175
1189
.
10.
Hamill
,
L.
, and
Gilbert
,
N.
,
2015
,
Agent-Based Modelling in Economics
,
John Wiley & Sons
,
West Sussex, UK
.
11.
Hamill
,
L.
, and
Gilbert
,
N.
,
2009
, “
Social Circles: A Sample Structure for Agent-Based Social Network Models
,”
J. Artif. Soc. Soc. Simul.
,
12
(
2
), p.
3
.
12.
Eppstein
,
M. J.
,
Grover
,
D. K.
,
Marshall
,
J. S.
, and
Rizzo
,
D. M.
,
2011
, “
An Agent-Based Model to Study Market Penetration of Plug-In Hybrid Electric Vehicles
,”
Energy Policy
,
39
(
6
), pp.
3789
3802
.
13.
Noori
,
M.
, and
Tatari
,
O.
,
2016
, “
Development of an Agent-Based Model for Regional Market Penetration Projections of Electric Vehicles in the United States
,”
Energy
,
96
, pp.
215
230
.
14.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
15.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2012
,
Decision-Based Design: Integrating Consumer Preferences Into Engineering Design
,
Springer Science & Business Media
,
Heidelberg
.
16.
Michalek
,
J. J.
,
2008
, “
Design for Market Systems
,”
Mech. Eng.
,
130
(
11
), p.
32
.
17.
Donndelinger
,
J. A.
, and
Ferguson
,
S. M.
,
2020
, “
Design for the Marketing Mix: The Past, Present, and Future of Market-Driven Engineering Design
,”
ASME J. Mech. Des.
,
142
(
6
), p.
060801
.
18.
Li
,
H.
, and
Azarm
,
S.
,
2000
, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
,
122
(
12
), pp.
411
418
.
19.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
20.
Shiau
,
C.N.
, and
Michalek
,
J. J
,
2009
, “
Should Designers Worry About Market Systems
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011011
.
21.
Shiau
,
C.-S.
, and
Michalek
,
J.J
,
2007
, “
A Game-Theoretic Approach To Finding Market Equilibria for Automotive Design Under Environmental Regulation
,”
ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
1
9
.
22.
Hawthorne
,
B. D.
, and
Panchal
,
J. H.
,
2012
, “
Policy Design for Sustainable Energy Systems Considering Multiple Objectives and Incomplete Preferences
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, American Society of Mechanical Engineers, pp.
253
267
.
23.
Hoffenson
,
S.
, and
Söderberg
,
R.
,
2015
, “
Taxation and Transparency: How Policy Decisions Impact Product Quality and Sustainability
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101702
.
24.
Easley
,
D.
and
Kleinberg
,
J.
,
2010
,
Networks, Crowds, and Markets
, Vol.
8
,
Cambridge University Press
,
Cambridge, UK
.
25.
Hamill
,
L.
, and
Gilbert
,
N.
,
2010
, “
Simulating Large Social Networks in Agent-Based Models: A Social Circle Model
,”
Emerg.: Complex. Organiz.
,
12
(
4
), pp.
78
94
.
26.
Wilensky
,
U.
,
2005
,
Center for Connected Learning and Computer-Based Modeling
,
Northwestern University
,
Evanston, IL
, http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment,
Accessed February 2019
.
27.
Erdös
,
P.
, and
Rényi
,
A.
,
1959
, “
On Random Graphs, I
,”
Publicationes Mathematicae (Debrecen)
,
6
(
290
). https://snap.stanford.edu/class/cs224w-readings/erdos59random.pdf
28.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.
29.
Barabasi
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Sci. (New York, N.Y.)
,
286
(
5439
), pp.
509
12
.
30.
Amini
,
M.
,
Wakolbinger
,
T.
,
Racer
,
M.
, and
Nejad
,
M. G.
,
2012
, “
Alternative Supply Chain Production–Sales Policies for New Product Diffusion: An Agent-Based Modeling and Simulation Approach
,”
Eur. J. Operat. Res.
,
216
(
2
), pp.
301
311
.
31.
Struben
,
J.
, and
Sterman
,
J. D.
,
2008
, “
Transition Challenges for Alternative Fuel Vehicle and Transportation Systems
,”
Environ. Planning B: Planning Design
,
35
(
6
), pp.
1070
1097
.
32.
He
,
M.
, and
Lee
,
J.
,
2020
, “
Social Culture and Innovation Diffusion: A Theoretically Founded Agent-Based Model
,”
J. Evol. Econ.
,
30
, pp.
1
41
.
33.
Sopha
,
B. M.
,
Klöckner
,
C. A.
, and
Febrianti
,
D.
,
2017
, “
Using Agent-Based Modeling to Explore Policy Options Supporting Adoption of Natural Gas Vehicles in Indonesia
,”
J. Environ. Psychol.
,
52
, pp.
149
165
.
34.
Pakravan
,
M. H.
, and
MacCarty
,
N.
,
2021
, “
An Agent-Based Model for Adoption of Clean Technology Using the Theory of Planned Behavior
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021402
.
35.
Zhang
,
T.
, and
Nuttall
,
W. J.
,
2012
, “
An Agent-Based Simulation of Smart Metering Technology Adoption
,”
Inter. J. Agent Technol. Syst. (IJATS)
,
4
(
1
), pp.
17
38
.
36.
Shafiei
,
E.
,
Thorkelsson
,
H.
,
Ásgeirsson
,
E. I.
,
Davidsdottir
,
B.
,
Raberto
,
M.
, and
Stefansson
,
H.
,
2012
, “
An Agent-Based Modeling Approach to Predict the Evolution of Market Share of Electric Vehicles: A Case Study From Iceland
,”
Technol. Forecast. Social Change
,
79
(
9
), pp.
1638
1653
.
37.
Zhang
,
T.
, and
Zhang
,
D.
,
2007
, “
Agent-Based Simulation of Consumer Purchase Decision-Making and the Decoy Effect
,”
J. Bus. Res.
,
60
(
8
), pp.
912
922
.
38.
Jager
,
W.
,
2007
, “
The Four P’s in Social Simulation, a Perspective on How Marketing Could Benefit From the Use of Social Simulation
,”
J. Bus. Res.
,
60
(
8
), pp.
868
875
.
39.
Karakaya
,
Ç.
,
Badur
,
B.
, and
Aytekin
,
C.
,
2011
, “
Analyzing the Effectiveness of Marketing Strategies in the Presence of Word of Mouth: Agent-Based Modeling Approach
,”
J. Market. Res. Case Studies
,
2011
, pp.
1
17
.
40.
Bell
,
D.
, and
Mgbemena
,
C.
,
2018
, “
Data-Driven Agent-Based Exploration of Customer Behavior
,”
Simulation
,
94
(
3
), pp.
195
212
.
41.
Janssen
,
M. A.
, and
Jager
,
W.
,
2001
, “
Fashions, Habits and Changing Preferences: Simulation of Psychological Factors Affecting Market Dynamics
,”
J. Econ. Psychol.
,
22
(
6
), pp.
745
772
.
42.
Engel
,
J. F.
,
Blackwell
,
R. D.
, and
Miniard
,
P. W.
,
1995
, “Consumer behavior, 8* Edition,” Dryden, Fort Worth, TX.
43.
Hofstede
,
G. J.
,
Jonker
,
C. M.
, and
Verwaart
,
T.
,
2008
,
International Workshop on Multi-Agent Systems and Agent-Based Simulation
,
Springer
,
Germany
, pp.
1
16
.
44.
Roozmand
,
O.
,
Ghasem-Aghaee
,
N.
,
Hofstede
,
G. J.
,
Nematbakhsh
,
M. A.
,
Baraani
,
A.
, and
Verwaart
,
T.
,
2011
, “
Agent-Based Modeling of Consumer Decision Making Process Based on Power Distance and Personality
,”
Knowledge-Based Syst.
,
24
(
7
), pp.
1075
1095
.
45.
Ferber
,
J.
,
Stratulat
,
T.
,
Tranier
,
J.
, and
Fr
,
T.
,
2009
,
Towards an Integral Approach of Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models
,
Information Science Reference
,
Hershey, PA
, p.
01
.
46.
Jager
,
W.
,
2000
, “
Modelling Consumer Behaviour
,” Ph.D. thesis,
University of Groningen
,
Groningen, Netherlands
.
47.
Lee
,
Y.
,
Kim
,
C.
, and
Shin
,
J.
,
2016
, “
A Hybrid Electric Vehicle Market Penetration Model to Identify the Best Policy Mix: A Consumer Ownership Cycle Approach
,”
Appl. Energy.
,
184
, pp.
438
449
.
48.
Kågeson
,
P.
,
2005
, “
Reducing CO2 Emissions from New Cars
,”
European Federation for Transport and Environment
.
49.
Jackson
,
M. O.
,
2010
,
Social and Economic Networks
,
Princeton University Press
,
Princeton, NJ
.
50.
Lieder
,
M.
,
Asif
,
F. M.
, and
Rashid
,
A.
,
2017
, “
Towards Circular Economy Implementation: An Agent-Based Simulation Approach for Business Model Changes
,”
Auton. Agents Multi-Agent Syst.
,
31
(
6
), pp.
1377
1402
.
51.
Kempe
,
D.
,
Kleinberg
,
J.
, and
Tardos
,
É.
,
2005
, “
Influential Nodes in a Diffusion Model for Social Networks
,”
32nd International Colloquium, ICALP 2005
,
Lisbon, Portugal
,
July 11–15
, Springer, pp.
1127
1138
.
52.
Brown
,
J. J.
, and
Reingen
,
P. H.
,
1987
, “
Social Ties and Word-of-Mouth Referral Behavior
,”
J. Consumer Res.
,
14
(
3
), pp.
350
362
.
53.
Mcpherson
,
M.
,
Smith-Lovin
,
L.
,
Cook
,
J. M.
,
Mcpherson ’
,
M.
,
Smith-Lovin ’
,
L.
, and
Cook2
,
J. M.
,
2001
, “
Birds of a Feather: Homophily in Social Networks
,”
Source: Ann. Rev. Soc.
,
27
, pp.
415
444
.
54.
Walsh
,
G.
, and
Mitchell
,
V. W..
,
2010
, “
The Effect of Consumer Confusion Proneness on Word of Mouth, Trust, and Customer Satisfaction
,”
Euro. J. Market.
,
44
(
12
), pp.
838
859
.
55.
Mayer
,
A.
,
2009
, “
Online Social Networks in Economics
,”
Decision Support Syst.
,
47
(
3
), pp.
169
184
.
56.
Kooti
,
F.
,
Lerman
,
K.
,
Aiello
,
L. M.
,
Grbovic
,
M.
,
Djuric
,
N.
, and
Radosavljevic
,
V.
,
2016
, “
Portrait of an Online Shopper: Understanding and Predicting Consumer Behavior
,”
Proceedings of the Ninth ACM International Conference on Web Search and Data Mining
,
San Francisco, CA
,
Feb. 22–25
, pp.
205
214
.
57.
Gilles
,
R.
,
James
,
T.
,
Barkhi
,
R.
, and
Diamantaras
,
D.
,
2011
,
Virtual Communities: Concepts, Methodologies, Tools and Applications
,
IGI Global
,
Hershey, PA
, pp.
581
599
.
58.
Smith
,
J. A.
,
McPherson
,
M.
, and
Smith-Lovin
,
L.
,
2014
, “
Social Distance in the United States: Sex, Race, Religion, Age, and Education Homophily Among Confidants, 1985 to 2004
,”
Am. Sociol. Rev.
,
79
(
3
), pp.
432
456
.
59.
Rogers
,
E. M.
,
1983
,
Diffusion of Innovations
,
Free Press
,
New York
.
60.
Weare
,
C.
,
Musso
,
J.
, and
Jun
,
K.-N.
,
2009
, “
Cross-Talk: The Role of Homophily and Elite Bias in Civic Associations
,”
Soc. Forces
,
88
(
1
), pp.
147
173
.
61.
Gillespie
,
B. J.
,
Frederick
,
D.
,
Harari
,
L.
, and
Grov
,
C.
,
2015
, “
Homophily, Close Friendship, and Life Satisfaction Among Gay, Lesbian, Heterosexual, and Bisexual Men and Women
,”
PLoS. One.
,
10
(
6
), p.
e0128900
.
62.
Boateng
,
M. K.
, and
Awuah-Offei
,
K.
,
2017
, “
Agent-Based Modeling Framework for Modeling the Effect of Information Diffusion on Community Acceptance of Mining
,”
Technol. Forecast. Soc. Change
,
117
, pp.
1
11
.
63.
Dattée
,
B.
, and
Weil
,
H. B.
,
2007
, “
Dynamics of Social Factors in Technological Substitutions
,”
Technol. Forecast. Soc. Change
,
74
(
5
), pp.
579
607
.
64.
Lee
,
J. Y.
, and
Iyengar
,
R.
,
2013
,
Social Learning for Experiential Product Purchases: The Impact of Homophily and Balance
.
65.
Postigo-Boix
,
M.
, and
Melús-Moreno
,
J. L.
,
2018
, “
A Social Model Based on Customers’ Profiles for Analyzing the Churning Process in the Mobile Market of Data Plans
,”
Phys. A: Statist. Mech. Appl.
,
496
, pp.
571
592
.
66.
DiMaggio
,
P
, and
Garip
,
F
,
2008
, “
Intergroup Inequality as a Product of Diffusion of Practices with Network Externalities Under Conditions of Social Homophily: Applications to the Digital Divide in the U.S. and Rural/Urban Migration in Thailand
,” P
aper Prepared for the Harvard/MIT Economic Sociology Workshop, April 2
.
67.
Wolf
,
I.
,
Schröder
,
T.
,
Neumann
,
J.
, and
de Haan
,
G.
,
2015
, “
Changing Minds About Electric Cars: An Empirically Grounded Agent-Based Modeling Approach
,”
Technol. Forecast. Social Change
,
94
, pp.
269
285
.
68.
Hoffenson
,
S.
,
Frischknecht
,
B. D.
, and
Papalambros
,
P. Y.
,
2013
, “
A Market Systems Analysis of the Us Sport Utility Vehicle Market Considering Frontal Crash Safety Technology and Policy
,”
Accid. Anal. Prevent.
,
50
, pp.
943
954
.
69.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2004
, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1062
1070
.
70.
Rossi
,
P. E.
, and
Allenby
,
G. M.
,
2003
, “
Bayesian Statistics and Marketing
,”
Market. Sci.
,
22
(
3
), pp.
304
328
.
71.
Sawtooth Software Inc
,
2017
, “
The cbc System for Choice-Based Conjoint Analysis
,” https://sawtoothsoftware.com/resources/technical-papers/cbc-technical-paper
72.
Green
,
P. E.
, and
Srinivasan
,
V.
,
1978
, “
Conjoint Analysis in Consumer Research: Issues and Outlook
,”
J. Cons. Res.
,
5
(
2
), pp.
103
123
.
73.
Michalek
,
J. J.
,
2005
, “
Preference Coordination in Engineering Design Decision-Making
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
74.
LeBeau
,
P.
,
2012
,
“Americans Buying Fewer New Cars in Lifetime,” CNBC
.
75.
McCormick
,
T. H.
,
Salganik
,
M. J.
, and
Zheng
,
T.
,
2010
, “
How Many People Do You Know?: Efficiently Estimating Personal Network Size
,”
J. Am. Stat. Assoc.
,
105
(
489
), pp.
59
70
.
76.
Hill
,
R. A.
, and
Dunbar
,
R. I.
,
2003
, “
Social Network Size in Humans
,”
Human Nat.
,
14
(
1
), pp.
53
72
.
77.
McCarty
,
C.
,
Killworth
,
P. D.
,
Bernard
,
H. R.
,
Johnsen
,
E. C.
, and
Shelley
,
G. A.
,
2001
, “
Comparing Two Methods for Estimating Network Size
,”
Human Organiz
,
60
(
1
), pp.
28
39
.
78.
Headley
,
C.
,
2019
,
New Study Claims the Average American Has This Many Friends, https://www.theladders.com/career-advice/new-study-claims-that-the-average-american-has-this-many-friends, Accessed March 2020
.
79.
Menezes
,
M. B.
,
Kim
,
S.
, and
Huang
,
R.
,
2017
, “
Constructing a Watts-strogatz Network From a Small-World Network With Symmetric Degree Distribution
,”
PLoS. One.
,
12
(
6
), p.
e0179120
.
80.
Cars.com
,
n.d
,
Car Research, Specs & Compare New Cars, https://www.cars.com/research, Accessed March 2019
.
81.
Mislove
,
A.
,
Marcon
,
M.
,
Gummadi
,
K. P.
,
Druschel
,
P.
, and
Bhattacharjee
,
B.
,
2007
, “
Measurement and Analysis of Online Social Networks
,”
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement
, pp.
29
42
.
82.
Mizuyama
,
H.
, and
Miyashita
,
E.
,
2016
, “
Product X: An Output-Agreement Game for Product Perceptual Mapping
,”
Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion
,
San Francisco, CA
,
Feb. 26–Mar. 2
.
83.
Morschheuser
,
B.
,
Hamari
,
J.
,
Koivisto
,
J.
, and
Maedche
,
A.
,
2017
, “
Gamified Crowdsourcing: Conceptualization, Literature Review, and Future Agenda
,”
Int. J. Hum-Comput. Stud.
,
106
, pp.
26
43
.
You do not currently have access to this content.