Abstract

Planning the shortest collision-free path among scattered obstacles is an NP-complete problem. As reviewed in this paper, a variety of deterministic as well as heuristic methods have been developed to address different instances of the problem. The focus of the deterministic methods is primarily on the optimality of the final solution and has been applied exclusively to regular shapes such as spheres or cubes. Nevertheless, due to the problem's intrinsic complexities (especially in 3D), researchers mainly resort to heuristics that offer acceptable (yet possibly suboptimal) solutions with reasonable resources. Therefore, less attention has been given to further the state-of-the-art in deterministic methods, which for 3D problems primarily focuses on approximating the solution. However, with the advancements in high-performance computing, we believe it is time to focus on solution quality. As such, this study aims to further the efforts in deterministic optimization methods for 3D path planning by overcoming some challenges of the existing methods and improving the optimality of the solution. The proposed approach is rooted in visibility-based planning methods where the obstacle-free space is modeled as a connectivity graph to be searched for the shortest path. The advantage of the proposed method in constructing the representative graph is that it does not make approximations to identify the graph nodes, unlike the existing methods. Nor does it limit the objects’ geometries to specific shapes such as blocks or spheres. The capability of the method in finding the shortest collision-free paths in environments cluttered with convex polyhedra is demonstrated using sample test problems.

References

1.
Lindfors
,
N.
,
Pesonen
,
A.
,
Franck
,
C.
, and
Kuosmanen
,
P.
,
2003
, “
Cabling Design Utilizing 3D CAD in Product Development of an Electric Device
,”
DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design
,
A.
Folkeson
,
K.
Gralen
,
M.
Norell
, and
U.
Sellgren
, eds.,
Stockholm, Sweden
,
Aug. 19–21
, pp.
29
30
.
2.
Park
,
H.
,
Lee
,
S. H.
, and
Cutkosky
,
M. R.
,
1992
, “
Computational Support for Concurrent Engineering of Cable Harnesses
,”
Computers in Engineering Conference
,
San Francisco, CA
,
Aug. 2–6
, pp.
261
268
.
3.
Ng
,
F. M.
,
Ritchie
,
J. M.
, and
Simmons
,
J. E. L.
,
2000
, “
The Design and Planning of Cable Harness Assemblies
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
214
(
10
), pp.
881
890
.
4.
Canny
,
J.
, and
Reif
,
J.
,
1987
, “
New Lower Bound Techniques for Robot Motion Planning Problems
,”
Annual Symposium on Foundations of Computer Science
,
Los Angeles, CA
,
Oct. 12–14
, pp.
49
60
.
5.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
6.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
7.
Stentz
,
A.
,
1994
,
The D* Algorithm for Real-Time Planning of Optimal Traverses
,
The Robotics Institute, Carnegie Mellon University
,
Pittsburgh, PA
.
8.
Ferguson
,
D.
, and
Stentz
,
A.
,
2005
,
The Field D* Algorithm for Improved Path Planning and Replanning in Uniform and Non-Uniform Cost Environments
,
The Robotics Institute, Carnegie Mellon University
,
Pittsburgh, PA
.
9.
Tran
,
N.
,
Dinneen
,
M. J.
, and
Linz
,
S.
,
2019
,
Multi-Criteria Shortest Paths in 3D Among Vertical Obstacles
,
Department of Computer Science, The University of Auckland
,
New Zealand
.
10.
Nilsson
,
N. J.
,
1969
, “
A Mobius Automation: An Application of Artificial Intelligence Techniques
,”
Proceedings of the First International Joint Conference on Artificial Intelligence
,
Washington, DC
,
May 7–9
, Morgan Kaufmann Publishers Inc., pp.
509
520
.
11.
Wangdahl
,
G. E.
,
Pollock
,
S. M.
, and
Woodward
,
J. B.
,
1974
, “
Minimum-Trajectory Pipe Routing
,”
J. Ship Res.
,
18
(
1
), pp.
46
49
.
12.
Lozano-Pérez
,
T.
, and
Wesley
,
M. A.
,
1979
, “
An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles
,”
Commun. ACM
,
22
(
10
), pp.
560
570
.
13.
Ma
,
Y.
,
Zheng
,
G.
, and
Perruquetti
,
W.
,
2013
, “
Cooperative Path Planning for Mobile Robots Based on Visibility Graph
,”
2013 32nd Chinese Control Conference (CCC)
,
Xi'an, China
,
July 26–28
, IEEE, pp.
4915
4920
.
14.
Papadimitriou
,
C. H.
,
1985
, “
An Algorithm for Shortest-Path Motion in Three Dimensions
,”
Inf. Process. Lett.
,
20
(
5
), pp.
259
263
.
15.
Gao
,
B.
,
Xu
,
D.
,
Zhang
,
F.
, and
Yao
,
Y.
,
2009
, “
Constructing Visibility Graph and Planning Optimal Path for Inspection of 2D Workspace
,”
IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009
,
Shanghai, China
,
Nov. 20–22
, pp.
693
698
.
16.
Sharir
,
M.
, and
Schorr
,
A.
,
1986
, “
On Shortest Paths in Polyhedral Spaces
,”
SIAM J. Comput.
,
15
(
1
), pp.
144
153
.
17.
Clarkson
,
K.
,
1987
, “
Approximation Algorithms for Shortest Path Motion Planning
,”
Proceedings of the 19th Annual ACM Symposium on Theory of Computing
,
New York City, NY
,
May 25–27
, pp.
56
65
.
18.
Choi
,
J.
,
Sellen
,
J.
, and
Yap
,
C. K.
,
1997
, “
Approximate Euclidean Shortest Paths in 3-Space
,”
Int. J. Comput. Geom. Appl.
,
7
(
4
), pp.
271
295
.
19.
Gewali
,
L. P.
,
Ntafos
,
S.
, and
Tollis
,
I. G.
,
1990
, “
Path Planning in the Presence of Vertical Obstacles
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
331
341
.
20.
Frontera
,
G.
,
Martín
,
D. J.
,
Besada
,
J. A.
, and
Gu
,
D. W.
,
2017
, “
Approximate 3D Euclidean Shortest Paths for Unmanned Aircraft in Urban Environments
,”
J. Intell. Rob. Syst. Theory Appl.
,
85
(
2
), pp.
353
368
.
21.
Jiang
,
K.
,
Seneviratne
,
L. D.
, and
Earles
,
S. W. E.
,
1993
, “
Finding the 3D Shortest Path With Visibility Graph and Minimum Potential Energy
,”
Proceedings of the 1993 IEEWSJ International Conference on Intelligent Robots and Systems
,
Yokohama, Japan
,
July 26–30
, pp.
679
684
.
22.
Liang
,
X.
,
Meng
,
G.
,
Xu
,
Y.
, and
Luo
,
H.
,
2018
, “
A Geometrical Path Planning Method for Unmanned Aerial Vehicle in 2D/3D Complex Environment
,”
Intell. Serv. Rob.
,
11
(
3
), pp.
301
312
.
23.
Ó’Dúnlaing
,
C.
, and
Yap
,
C. K.
,
1985
, “
A Retraction Method for Planning of a Disc the Motion
,”
J. Algorithms
,
6
(
1
), pp.
104
111
.
24.
O’Rourke
,
J.
, and
Mallinckrodt
,
A. J.
,
1998
,
Computational Geometry in C
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
25.
Bhattacharya
,
P.
, and
Gavrilova
,
M. L.
,
2007
, “
Geometric Algorithms for Clearance Based Optimal Path Computation
,”
Proceedings of the 15th International Symposium on Advances in Geographic Information Systems ACM GIS
,
Seattle, WA
,
Nov. 7–9
, pp.
1
4
.
26.
Leven
,
D.
, and
Sharir
,
M.
,
1987
, “
Planning a Purely Translational Motion for a Convex Object in Two-Dimensional Space Using Generalized Voronoi Diagrams
,”
Discrete Comput. Geom.
,
2
(
1
), pp.
9
31
.
27.
Zhang
,
L.
, and
Manocha
,
D.
,
2008
, “
An Efficient Retraction-Based RRT Planner
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3743
3750
.
28.
Takahashi
,
O.
, and
Schilling
,
R. J.
,
1989
, “
Motion Planning in a Plane Using Generalized Voronoi Diagrams
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
143
150
.
29.
Alt
,
H.
, and
Yap
,
C. K.
,
1989
,
Algorithmic Aspects of Motion Planning a Tutorial
, Vol.
1
,
Berlin Freie Univ., Fachbereich Mathematik
, pp.
173
196
.
30.
Schwartz
,
J. T.
,
Sharir
,
M.
, and
Hopcroft
,
J. E.
,
1987
,
Planning, Geometry, and Complexity of Robot Motion
,
Ablex Pub. Corp.
,
Norwood, NJ
.
31.
Schwartz
,
J. T.
, and
Sharir
,
M.
,
1983
, “
On the ‘Piano Movers’ Problem I. The Case of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers
,”
Commun. Pure Appl. Math.
,
36
(
3
), pp.
345
398
.
32.
Brooks
,
R. A.
, and
Lozano-Perez
,
T.
,
1985
, “
A Subdivision Algorithm in Configuration Space for Findpath With Rotation
,”
IEEE Trans. Syst. Man Cybern.
,
15
(
2
), pp.
224
233
. DOI: 10.1109/TSMC.1985.6313352
33.
Latombe
,
J.-C.
,
1991
,
Robot Motion Planning
,
Kluwer Academic Publishers
,
Boston, MA
.
34.
Kavraki
,
L.
, and
Lat
,
J.-C.
,
1994
, “
Randomized Preprocessing of Configuration Space for Fast Path Planning
,”
1994 IEEE International Conference on Robotics and Automation, Proceedings
,
San Diego, CA
,
May 8–13
, pp.
2138
2145
.
35.
Redon
,
S.
, and
Lin
,
M. C.
,
2005
, “
Practical Local Planning in the Contact Space
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
4200
4205
.
36.
Ichter
,
B.
, and
Pavone
,
M.
,
2019
, “
Robot Motion Planning in Learned Latent Spaces
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2407
2414
.
37.
Lu
,
J.
,
Diaz-Mercado
,
Y.
,
Egerstedt
,
M.
,
Zhou
,
H.
, and
Chow
,
S. N.
,
2014
, “
Shortest Paths Through 3-Dimensional Cluttered Environments
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 5
, IEEE, pp.
6579
6585
.
38.
Bhattacharya
,
B. Y. P.
, and
Gavrilova
,
M. L.
,
2008
, “
Roadmap-Based Path Planning-Using the Voronoi Diagram for a Clearance-Based Shortest Path
,”
IEEE Rob. Autom. Mag.
,
15
(
2
), pp.
58
66
. DOI: 10.1109/MRA.2008.921540
39.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Autonomous Robot Vehicles
, pp.
396
404
. DOI: 10.1007/978-1-4613-8997-2_29
40.
Hong
,
R.
, and
DeSouza
,
G. N.
,
2010
, “
A Real-Time Path Planner for a Smart Wheelchair Using Harmonic Potentials and a Rubber Band Model
,”
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
3282
3287
.
41.
Azzabi
,
A.
, and
Nouri
,
K.
,
2019
, “
An Advanced Potential Field Method Proposed for Mobile Robot Path Planning
,”
Trans. Inst. Meas. Control
,
41
(
11
), pp.
3132
3144
.
42.
Chen
,
X.
, and
Zhang
,
J.
,
2013
, “
The Three-Dimension Path Planning of UAV Based on Improved Artificial Potential Field in Dynamic Environment
,”
Proceedings—2013 Fifth International Conference on Intelligent Human–Machine Systems and Cybernetics IHMSC
,
Hangzhou, China
,
Aug. 26–27
, Vol. 2, pp.
144
147
.
43.
Overmars
,
M. H.
,
1992
,
A Random Approach to Motion Planning
,
Department of Computer Science, Utrecht University
,
Utrecht, The Netherlands
.
44.
Elbanhawi
,
M.
, and
Simic
,
M.
,
2014
, “
Sampling-Based Robot Motion Planning: A Review
,”
IEEE Access
,
2
, pp.
56
77
. DOI:10.1109/ACCESS.2014.2302442
45.
Li
,
G.
,
Yamashita
,
A.
,
Asama
,
H.
, and
Tamura
,
Y.
,
2012
, “
An Efficient Improved Artificial Potential Field Based Regression Search Method for Robot Path Planning
,”
2012 International Conference on Mechatronics and Automation (ICMA)
,
Chengdu, China
,
Aug. 5–8
, pp.
1227
1232
.
46.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Nonorthogonal Routes.PDF
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
419
424
.
47.
Fan
,
X.
,
Lin
,
Y.
, and
Ji
,
Z.
,
2006
, “
The Ant Colony Optimization for Ship Pipe Route Design in 3D Space
,”
Proceedings of the World Congress on Intelligent Control and Automation
,
Dalian, China
,
June 21–23
, Vol. 1, pp.
3103
3108
.
48.
Zachariadis
,
E. E.
,
Tarantilis
,
C. D.
, and
Kiranoudis
,
C. T.
,
2009
, “
A Guided Tabu Search for the Vehicle Routing Problem With Two-Dimensional Loading Constraints
,”
Eur. J. Oper. Res.
,
195
(
3
), pp.
729
743
.
49.
Gao
,
R.
, and
Setup
,
A. C.
,
2016
, “
Complex Housing: Modelling and Optimization Using an Improved Multi-objective Simulated Annealing Algorithm
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, pp.
1
12
.
50.
Ahn
,
C. W.
, and
Ramakrishna
,
R. S.
,
2002
, “
A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations
,”
IEEE Trans. Evol. Comput.
,
6
(
6
), pp.
566
579
.
51.
Liu
,
Q.
, and
Wang
,
C.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assem. Autom.
,
31
(
4
), pp.
363
368
.
52.
Thantulage
,
G.
,
Kalganova
,
T.
, and
Wilson
,
M.
,
2008
, “
Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
,”
Int. J. Comput. Infor. Eng.
,
2
(
2
), pp.
510
516
. doi.org/10.5281/zenodo.1329450
53.
Thantulage
,
G.
,
Kalganova
,
T.
, and
Fernando
,
W. A. C.
,
2006
, “
A Grid-Based Ant Colony Algorithm for Automatic 3D Hose Routing
,”
2006 IEEE International Conference on Evolutionary Computation
,
Vancouver, BC, Canada
,
July 16–21
, pp.
48
55
.
54.
Fernando
,
T. G. I.
, and
Kalganova
,
T.
,
2012
, “
Multi-Colony Ant Systems for Multi-Hose Routing
,”
Int. J. Comput. Appl.
,
59
(
2
), pp.
1
14
. DOI: 10.5120/9517-3931
55.
Liu
,
Q.
, and
Wang
,
C.
,
2010
, “
Pipe-Assembly Approach for Aero-Engines by Modified Particle Swarm Optimization
,”
Assem. Autom.
,
30
(
4
), pp.
365
377
.
56.
Liu
,
Q.
, and
Wang
,
C.
,
2012
, “
Multi-terminal Pipe Routing by Steiner Minimal Tree and Particle Swarm Optimisation
,”
Enterp. Inf. Syst.
,
6
(
3
), pp.
315
327
.
57.
Liu
,
Q.
, and
Wang
,
C.
,
2008
, “
A Modified Particle Swarm Optimizer for Pipe Route Design
,”
Proceedings of the 11th IEEE International Conference on Computational Science and Engineering CSE Work
,
São Paulo, SP, Brazil
,
July 16–18
, pp.
157
161
.
58.
Gong
,
D. W.
,
Zhang
,
J. H.
, and
Zhang
,
Y.
,
2011
, “
Multi-Objective Particle Swarm Optimization for Robot Path Planning in Environment With Danger Sources
,”
J. Comput.
,
6
(
8
), pp.
1554
1561
. DOI: 10.4304/jcp.6.8.1554-1561
59.
Sandurkar
,
S.
, and
Chen
,
W.
,
1999
, “
GAPRUS—Genetic Algorithms Based Pipe Routing Using Tessellated Objects
,”
Comput. Ind.
,
38
(
3
), pp.
209
223
.
60.
Masehian
,
E.
, and
Sedighizadeh
,
D.
,
2007
, “
Classic and Heuristic Approaches in Robot Motion Planning—A Chronological Review
,”
World Acad. Sci. Eng. Technol.
,
29
(
1
), pp.
101
106
. doi.org/10.5281/zenodo.1074972
61.
Masoudi
,
N.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2019
, “
Planning the Shortest Path in Cluttered Environments: A Review and a Planar Convex Hull-Based Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041011
.
62.
Kuwata
,
Y.
, and
How
,
J.
,
2004
, “
Three Dimensional Receding Horizon Control for UAVs
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Providence, RI
,
Aug. 5–8
, pp.
5144
5157
.
63.
Huang
,
S.
, and
Teo
,
R. S. H.
,
2019
, “
Computationally Efficient Visibility Graph-Based Generation of 3D Shortest Collision-Free Path Among Polyhedral Obstacles for Unmanned Aerial Vehicles
,”
2019 International Conference on Unmanned Aircraft Systems, ICUAS
,
Atlanta, GA
,
June 11–14
, pp.
1218
1223
.
64.
Omar
,
R.
, and
Gu
,
D.
,
2010
, “
3D Path Planning for Unmanned Aerial Vehicles Using Visibility Line Based Method
,”
ICINCO 2010—Proceedings of the Seventh International Conference on Informatics in Control, Automation and Robotics
,
Funchal, Madeira, Portugal
,
June 15–18
, pp.
80
85
.
65.
Alexandrov
,
A. D.
,
2005
,
Convex Polyhedra
,
Springer
,
Berlin, Germany
.
66.
Chakravorty
,
D.
,
2019
, “The Most Common 3D File Formats,” https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj/
67.
Möller
,
T.
, and
Trumbore
,
B.
,
1997
, “
Fast, Minimum Storage Ray/Triangle Intersection
,”
J. Graph. Tools
,
2
(
1
), pp.
21
28
.
68.
Masoudi
,
N.
,
2020
,
Geometric-Based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments
,
Clemson University
,
Clemson, SC
.
69.
Canny
,
J.
,
1987
, “
A New Algebraic Method for Robot Motion Planning and Real Geometry
,”
28th Annual Symposium on Foundations of Computer Science (SFCS 1987)
,
Los Angeles, CA
,
Oct. 12–14
.
70.
Masoudi
,
N.
, and
Fadel
,
G.
,
2022
, “
An Optimization Framework for the Design of Cable Harness Layouts in Planar Interconnected Systems
,”
ASME J. Mech. Des.
,
144
(
1
), p.
011701
.
You do not currently have access to this content.