Abstract

Growing trends towards increased complexity and prolonged useful lives of engineering systems present challenges for system designers in accounting for the impacts of post-design activities (e.g., manufacturing, condition monitoring, remaining life prediction, maintenance, service logistics, end-of-life options, etc.) on system performance (e.g., costs, reliability, customer satisfaction, environmental impacts, etc.). It is very difficult to develop accredited lifecycle system performance models because these activities only occur after the system is built and operated. Thus, system design and post-design decision-making have traditionally been addressed separately, leading to suboptimal performance over the systems lifecycle. With significant advances in computational modeling, simulation, sensing & condition monitoring, and machine learning & artificial intelligence, the capability of predictive modeling has grown prominently over the past decade, leading to demonstrated benefits such as improved system availability and reduced operation and maintenance costs. Predictive modeling can bridge system design and post-design stages and provide an optimal pathway for system designers to effectively account for future system operations at the design stage. In order to achieve optimal performance over the system’s lifecycle, post-design decisions and system operating performance can be incorporated into the initial design with the aid of state-of-the-art predictive modeling approaches. Therefore, optimized design and operation decisions can be explored jointly in an enlarged system design space. This article conducted a literature review for the integrated design and operation of engineering systems with predictive modeling, where not only the predictive modeling approaches but also the strategies of integrating predictive models into the system design processes are categorized. Although predictive modeling has been handled from data-driven, statistical, analytical, and empirical aspects, and recent design problems have started to evaluate the lifecycle performance, there are still challenges in the field that require active investigation and exploration. So, in the end, this article provides a summary of the future directions that encourages research collaborations among the various communities interested in the optimal system lifecycle design.

References

1.
Ma
,
H.
,
Chu
,
X.
,
Lyu
,
G.
, and
Xue
,
D.
,
2017
, “
An Integrated Approach for Design Improvement Based on Analysis of Time-Dependent Product Usage Data
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111401
.
2.
Eshghi
,
A. T.
,
Lee
,
S.
,
Jung
,
H.
, and
Wang
,
P.
,
2019
, “
Design of Structural Monitoring Sensor Network Using Surrogate Modeling of Stochastic Sensor Signal
,”
Mech. Syst. Signal Process.
,
133
(
1
), p.
106280
.
3.
Peddada
,
S. R. T.
,
Tannous
,
P. J.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2020
, “
Optimal Sensor Placement Methods in Active High Power Density Electronic Systems With Experimental Validation
,”
ASME J. Mech. Des.
,
142
(
2
), p.
023501
.
4.
Zio
,
E.
,
2022
, “
Prognostics and Health Management (PHM): Where Are We and Where Do We (Need to) Go in Theory and Practice
,”
Reliab. Eng. Syst. Saf.
,
218
(
1
), p.
108119
.
5.
Liu
,
J.
,
Li
,
Y.-F.
, and
Zio
,
E.
,
2017
, “
A SVM Framework for Fault Detection of the Braking System in a High Speed Train
,”
Mech. Syst. Signal Process.
,
87
(
1
), pp.
401
409
.
6.
Hu
,
Q.
,
Xie
,
M.
,
Ng
,
S. H.
, and
Levitin
,
G.
,
2007
, “
Robust Recurrent Neural Network Modeling for Software Fault Detection and Correction Prediction
,”
Reliab. Eng. Syst. Saf.
,
92
(
3
), pp.
332
340
.
7.
Tamilselvan
,
P.
, and
Wang
,
P.
,
2013
, “
Failure Diagnosis Using Deep Belief Learning Based Health State Classification
,”
Reliab. Eng. Syst. Saf.
,
115
(
1
), pp.
124
135
.
8.
Tang
,
K.
,
Parsons
,
D. J.
, and
Jude
,
S.
,
2019
, “
Comparison of Automatic and Guided Learning for Bayesian Networks to Analyse Pipe Failures in the Water Distribution System
,”
Reliab. Eng. Syst. Saf.
,
186
(
1
), pp.
24
36
.
9.
Pan
,
Y.
,
Jing
,
Y.
,
Wu
,
T.
, and
Kong
,
X.
,
2021
, “
An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring
,”
Reliab. Eng. Syst. Saf.
,
210
(
1
), p.
107546
.
10.
Gómez
,
M. J.
,
Castejón
,
C.
, and
García-Prada
,
J. C.
,
2016
, “
Automatic Condition Monitoring System for Crack Detection in Rotating Machinery
,”
Reliab. Eng. Syst. Saf.
,
152
(
1
), pp.
239
247
.
11.
Xi
,
Z.
,
Jing
,
R.
,
Wang
,
P.
, and
Hu
,
C.
,
2014
, “
A Copula-Based Sampling Method for Data-Driven Prognostics
,”
Reliab. Eng. Syst. Saf.
,
132
(
1
), pp.
72
82
.
12.
Baptista
,
M.
,
Henriques
,
E. M.
,
de Medeiros
,
I. P.
,
Malere
,
J. P.
,
Nascimento Jr.
,
C. L.
, and
Prendinger
,
H.
,
2019
, “
Remaining Useful Life Estimation in Aeronautics: Combining Data-Driven and Kalman Filtering
,”
Reliab. Eng. Syst. Saf.
,
184
(
1
), pp.
228
239
.
13.
Bai
,
G.
, and
Wang
,
P.
,
2016
, “
Prognostics Using an Adaptive Self-Cognizant Dynamic System Approach
,”
IEEE Trans. Reliab.
,
65
(
3
), pp.
1427
1437
.
14.
Alaswad
,
S.
, and
Xiang
,
Y.
,
2017
, “
A Review on Condition-Based Maintenance Optimization Models for Stochastically Deteriorating System
,”
Reliab. Eng. Syst. Saf.
,
157
(
1
), pp.
54
63
.
15.
Liu
,
X.
, and
Wang
,
P.
,
2020
, “
Maintenance Decision Making Using State Dependent Markov Analysis With Failure Couplings
,”
2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM)
,
Virtual
,
Aug. 20–23
, IEEE, pp.
1
6
.
16.
Kampitsis
,
D.
, and
Panagiotidou
,
S.
,
2022
, “
A Bayesian Condition-Based Maintenance and Monitoring Policy With Variable Sampling Intervals
,”
Reliab. Eng. Syst. Saf.
,
218
(
1
), p.
108159
.
17.
Han
,
Z.
,
Jiang
,
Z.
,
Ehrt
,
S.
, and
Li
,
M.
,
2021
, “
Low-Cycle Fatigue Lifetime Estimation and Predictive Maintenance for a Gas Turbine Compressor Vane Carrier Under Varying Operating Conditions
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072003
.
18.
Liu
,
X.
, and
Wang
,
P.
,
2021
, “
Value of Information for Continuous Monitoring Systems in Recurrent Maintenance Decision Scenarios
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
, Vol. 85383, American Society of Mechanical Engineers, p. V03AT03A040.
19.
Guillén
,
A. J.
,
Crespo
,
A.
,
Gómez
,
J. F.
, and
Sanz
,
M. D.
,
2016
, “
A Framework for Effective Management of Condition Based Maintenance Programs in the Context of Industrial Development of e-Maintenance Strategies
,”
Comput. Ind.
,
82
(
1
), pp.
170
185
.
20.
Tian
,
Z.
,
Wu
,
B.
, and
Chen
,
M.
,
2014
, “
Condition-Based Maintenance Optimization Considering Improving Prediction Accuracy
,”
J. Oper. Res. Soc.
,
65
(
9
), pp.
1412
1422
.
21.
Kumar
,
A.
,
Shankar
,
R.
, and
Thakur
,
L. S.
,
2018
, “
A Big Data Driven Sustainable Manufacturing Framework for Condition-Based Maintenance Prediction
,”
J. Comput. Sci.
,
27
(
1
), pp.
428
439
.
22.
Fauriat
,
W.
, and
Zio
,
E.
,
2020
, “
Optimization of an Aperiodic Sequential Inspection and Condition-Based Maintenance Policy Driven by Value of Information
,”
Reliab. Eng. Syst. Saf.
,
204
(
1
), p.
107133
.
23.
Wang
,
J.
,
Yang
,
L.
,
Ma
,
X.
, and
Peng
,
R.
,
2021
, “
Joint Optimization of Multi-Window Maintenance and Spare Part Provisioning Policies for Production Systems
,”
Reliab. Eng. Syst. Saf.
,
216
(
1
), p.
108006
.
24.
Olde Keizer
,
M. C. A.
,
Teunter
,
R. H.
, and
Veldman
,
J.
,
2017
, “
Joint Condition-Based Maintenance and Inventory Optimization for Systems With Multiple Components
,”
Eur. J. Oper. Res.
,
257
(
1
), pp.
209
222
.
25.
de Jonge
,
B.
,
Teunter
,
R.
, and
Tinga
,
T.
,
2017
, “
The Influence of Practical Factors on the Benefits of Condition-Based Maintenance Over Time-Based Maintenance
,”
Reliab. Eng. Syst. Saf.
,
158
(
1
), pp.
21
30
.
26.
Behdad
,
S.
, and
Thurston
,
D. L.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041011
.
27.
Behdad
,
S.
,
Williams
,
A. S.
, and
Thurston
,
D.
,
2012
, “
End-of-Life Decision Making With Uncertain Product Return Quantity
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100902
.
28.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.
29.
Kang
,
S. W.
,
Sane
,
C.
,
Vasudevan
,
N.
, and
Tucker
,
C. S.
,
2014
, “
Product Resynthesis: Knowledge Discovery of the Value of End-of-Life Assemblies and Sub-Assemblies
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011004
.
30.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Optimal Modular Remanufactured Product Configuration and Harvesting Planning for End-of-Life Products
,”
ASME J. Mech. Des.
,
144
(
4
), p.
042001
.
31.
Wakiru
,
J.
,
Pintelon
,
L.
,
Muchiri
,
P. N.
, and
Chemweno
,
P. K.
,
2021
, “
Integrated Remanufacturing, Maintenance and Spares Policies Towards Life Extension of a Multi-Component System
,”
Reliab. Eng. Syst. Saf.
,
215
(
1
), p.
107872
.
32.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Soares
,
C. G.
,
2022
, “
Life-Extension Classification of Offshore Wind Assets Using Unsupervised Machine Learning
,”
Reliab. Eng. Syst. Saf.
,
219
(
1
), p.
108229
.
33.
Lee
,
M.
,
Park
,
Y.
,
Jo
,
H.
,
Kim
,
K.
,
Lee
,
S.
, and
Lee
,
I.
,
2022
, “
Deep Generative Tread Pattern Design Framework for Efficient Conceptual Design
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071703
.
34.
Hoefer
,
M. J.
, and
Frank
,
M. C.
,
2018
, “
Automated Manufacturing Process Selection During Conceptual Design
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031701
.
35.
Burgess
,
S. C.
,
2012
, “
A Backwards Design Process for Mechanical Conceptual Design
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031002
.
36.
Herrmann
,
J. W.
, and
Schmidt
,
L. C.
,
2010
, “
A Conceptual Design Tool for Resolving Conflicts Between Product Functionality and Environmental Impact
,”
ASME J. Mech. Des.
,
132
(
8
), p.
091006
.
37.
Ross
,
D.
,
Ferrero
,
V.
, and
DuPont
,
B.
,
2022
, “
Exploring the Effectiveness of Providing Structured Design-for-the-Environment Strategies During Conceptual Design
,”
ASME J. Mech. Des.
,
144
(
3
), p.
032001
.
38.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111405
.
39.
Kowal
,
K.
, and
Torabi
,
M.
,
2021
, “
Failure Mode and Reliability Study for Electrical Facility of the High Temperature Engineering Test Reactor
,”
Reliab. Eng. Syst. Saf.
,
210
(
1
), p.
107529
.
40.
Wang
,
J.
, and
Li
,
M.
,
2015
, “
Redundancy Allocation for Reliability Design of Engineering Systems With Failure Interactions
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031403
.
41.
Wang
,
Z.
,
Wang
,
Z.
,
Yu
,
S.
, and
Cheng
,
X.
,
2019
, “
Time-Dependent Concurrent Reliability-Based Design Optimization Integrating the Time-Variant b-Distance Index
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091403
.
42.
Yin
,
J.
, and
Du
,
X.
,
2021
, “
A Safety Factor Method for Reliability-Based Component Design
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091705
.
43.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
44.
Xiong
,
Y.
,
Duong
,
P. L. T.
,
Wang
,
D.
,
Park
,
S.-I.
,
Ge
,
Q.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2019
, “
Data-driven Design Space Exploration and Exploitation for Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101101
.
45.
Sharpe
,
C.
,
Wiest
,
T.
,
Wang
,
P.
, and
Seepersad
,
C. C.
,
2019
, “
A Comparative Evaluation of Supervised Machine Learning Classification Techniques for Engineering Design Applications
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121404
.
46.
Odonkor
,
P.
, and
Lewis
,
K.
,
2019
, “
Data-Driven Design of Control Strategies for Distributed Energy Systems
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111404
.
47.
Liu
,
K.
,
Wu
,
T.
,
Detwiler
,
D.
,
Panchal
,
J.
, and
Tovar
,
A.
,
2019
, “
Design for Crashworthiness of Categorical Multimaterial Structures Using Cluster Analysis and Bayesian Optimization
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121701
.
48.
Meng
,
Z.
,
Zhang
,
D.
,
Liu
,
Z.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
.
49.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
A Double-Loop Adaptive Sampling Approach for Sensitivity-Free Dynamic Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
142
(
1
), pp.
346
356
.
50.
Sadoughi
,
M. K.
,
Li
,
M.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2018
, “
A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071401
.
51.
Zhou
,
J.
,
Xu
,
M.
, and
Li
,
M.
,
2016
, “
Reliability-Based Design Optimization Concerning Objective Variation Under Mixed Probabilistic and Interval Uncertainties
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114501
.
52.
Lin
,
P. T.
, and
Lin
,
S.-P.
,
2016
, “
An Effective Approach to Solve Design Optimization Problems With Arbitrarily Distributed Uncertainties in the Original Design Space Using Ensemble of Gaussian Reliability Analyses
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071403
.
53.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.
54.
Bouchouireb
,
H.
,
Jank
,
M.-H.
,
O’Reilly
,
C. J.
,
Göransson
,
P.
,
Schöggl
,
J.-P.
,
Baumgartner
,
R. J.
, and
Potting
,
J.
,
2021
, “
The Inclusion of End-of-Life Modeling in the Life Cycle Energy Optimization Methodology
,”
ASME J. Mech. Des.
,
143
(
5
), p.
052002
.
55.
Feng
,
Y.
,
Zhao
,
Y.
,
Zheng
,
H.
,
Li
,
Z.
, and
Tan
,
J.
,
2020
, “
Data-Driven Product Design Toward Intelligent Manufacturing: A Review
,”
Int. J. Adv. Rob. Syst.
,
17
(
2
), p.
1729881420911257
.
56.
Hou
,
L.
, and
Jiao
,
R. J.
,
2020
, “
Data-Informed Inverse Design by Product Usage Information: A Review, Framework and Outlook
,”
J. Intell. Manuf.
,
31
(
3
), pp.
529
552
.
57.
Ghosh
,
D.
,
Olewnik
,
A.
,
Lewis
,
K.
,
Kim
,
J.
, and
Lakshmanan
,
A.
,
2017
, “
Cyber-Empathic Design: A Data-Driven Framework for Product Design
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091401
.
58.
Chan
,
K. Y.
,
Kwong
,
C. K.
, and
Jiang
,
H.
,
2021
, “
Analyzing Imbalanced Online Consumer Review Data in Product Design Using Geometric Semantic Genetic Programming
,”
Eng. Appl. Artif. Intell.
,
105
(
1
), p.
104442
.
59.
Bayrak
,
A. E.
, and
Sha
,
Z.
,
2021
, “
Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051401
.
60.
Pitiot
,
P.
,
Coudert
,
T.
,
Geneste
,
L.
, and
Baron
,
C.
,
2010
, “
Hybridation of Bayesian Networks and Evolutionary Algorithms for Multi-Objective Optimization in an Integrated Product Design and Project Management Context
,”
Eng. Appl. Artif. Intell.
,
23
(
5
), pp.
830
843
.
61.
Zhu
,
J. Y.
, and
Deshmukh
,
A.
,
2003
, “
Application of Bayesian Decision Networks to Life Cycle Engineering in Green Design and Manufacturing
,”
Eng. Appl. Artif. Intell.
,
16
(
2
), pp.
91
103
.
62.
Luo
,
X.
,
Ge
,
Z.
,
Zhang
,
S.
, and
Yang
,
Y.
,
2021
, “
A Method for the Maintainability Evaluation at Design Stage Using Maintainability Design Attributes
,”
Reliab. Eng. Syst. Saf.
,
210
(
1
), p.
107535
.
63.
Li
,
J.
,
Zhang
,
H.-C.
,
Gonzalez
,
M. A.
, and
Yu
,
S.
,
2008
, “
A Multi-Objective Fuzzy Graph Approach for Modular Formulation Considering End-of-Life Issues
,”
Int. J. Prod. Res.
,
46
(
14
), pp.
4011
4033
.
64.
Xing
,
K.
, and
Belusko
,
M.
,
2008
, “
Design for Upgradability Algorithm: Configuring Durable Products for Competitive Reutilization
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111102
.
65.
Sakundarini
,
N.
,
Taha
,
Z.
,
Ghazilla
,
R. A. R.
, and
Abdul-Rashid
,
S. H.
,
2015
, “
A Methodology for Optimizing Modular Design Considering Product End of Life Strategies
,”
Int. J. Precis. Eng. Manuf.
,
16
(
11
), pp.
2359
2367
.
66.
Chung
,
W.-H.
,
Okudan Kremer
,
G. E.
, and
Wysk
,
R. A.
,
2013
, “
A Modular Design Approach to Improve Product Life Cycle Performance Based on the Optimization of a Closed-Loop Supply Chain
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021001
.
67.
Anand
,
A.
, and
Wani
,
M. F.
,
2010
, “
Product Life-Cycle Modeling and Evaluation at the Conceptual Design Stage: A Digraph and Matrix Approach
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091010
.
68.
Sadegh
,
P.
,
Thompson
,
A.
,
Luo
,
X.
,
Park
,
Y.
, and
Sienel
,
T.
,
2006
, “
A Methodology for Predicting Service Life and Design of Reliability Experiments
,”
IEEE Trans. Reliab.
,
55
(
1
), pp.
75
85
.
69.
Sabbaghi
,
M.
, and
Behdad
,
S.
,
2017
, “
Environmental Evaluation of Product Design Alternatives: The Role of Consumer’s Repair Behavior and Deterioration of Critical Components
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081701
.
70.
Bae
,
H.-R.
,
Ando
,
H.
,
Nam
,
S.
,
Kim
,
S.
, and
Ha
,
C.
,
2015
, “
Fatigue Design Load Identification Using Engineering Data Analytics
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011001
.
71.
Andrews
,
J.
, and
Fecarotti
,
C.
,
2017
, “
System Design and Maintenance Modelling for Safety in Extended Life Operation
,”
Reliab. Eng. Syst. Saf.
,
163
(
1
), pp.
95
108
.
72.
Gao
,
X.
,
Barabady
,
J.
, and
Markeset
,
T.
,
2010
, “
An Approach for Prediction of Petroleum Production Facility Performance Considering Arctic Influence Factors
,”
Reliab. Eng. Syst. Saf.
,
95
(
8
), pp.
837
846
.
73.
Mendoza
,
J.
,
Bismut
,
E.
,
Straub
,
D.
, and
Köhler
,
J.
,
2021
, “
Risk-Based Fatigue Design Considering Inspections and Maintenance
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng.
,
7
(
1
), p.
04020055
.
74.
Innal
,
F.
,
Dutuit
,
Y.
, and
Chebila
,
M.
,
2015
, “
Safety and Operational Integrity Evaluation and Design Optimization of Safety Instrumented Systems
,”
Reliab. Eng. Syst. Saf.
,
134
(
1
), pp.
32
50
.
75.
Sartorato
,
M.
,
de Medeiros
,
R.
,
Vandepitte
,
D.
, and
Tita
,
V.
,
2017
, “
Computational Model for Supporting SHM Systems Design: Damage Identification Via Numerical Analyses
,”
Mech. Syst. Signal Process.
,
84
(
1
), pp.
445
461
.
76.
Hegseth
,
J. M.
,
Bachynski
,
E. E.
, and
Leira
,
B. J.
,
2021
, “
Effect of Environmental Modelling and Inspection Strategy on the Optimal Design of Floating Wind Turbines
,”
Reliab. Eng. Syst. Saf.
,
214
(
1
), p.
107706
.
77.
Kang
,
J.
, and
Wang
,
S.
,
2018
, “
Robust Optimal Design of Distributed Energy Systems Based on Life-Cycle Performance Analysis Using a Probabilistic Approach Considering Uncertainties of Design Inputs and Equipment Degradations
,”
Appl. Energy
,
231
(
1
), pp.
615
627
.
78.
Xia
,
M.
,
Li
,
T.
,
Zhang
,
Y.
, and
de Silva
,
C. W.
,
2016
, “
Closed-Loop Design Evolution of Engineering System Using Condition Monitoring Through Internet of Things and Cloud Computing
,”
Comput. Networks
,
101
(
1
), pp.
5
18
.
79.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1
), pp.
314
334
.
80.
Wang
,
S.
,
Lai
,
X.
,
He
,
X.
,
Qiu
,
Y.
, and
Song
,
X.
,
2021
, “
Building a Trustworthy Product-Level Shape-Performance Integrated Digital Twin With Multifidelity Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031703
.
81.
Li
,
K.
,
Gao
,
Y.
,
Zheng
,
H.
, and
Tan
,
J.
,
2021
, “
A Data-Driven Methodology to Improve Tolerance Allocation Using Product Usage Data
,”
ASME J. Mech. Des.
,
143
(
7
), p.
071101
.
82.
Hou
,
L.
,
Wu
,
X.
,
Wu
,
Z.
, and
Wu
,
S.
,
2020
, “
Pattern Identification and Risk Prediction of Domino Effect Based on Data Mining Methods for Accidents Occurred in the Tank Farm
,”
Reliab. Eng. Syst. Saf.
,
193
(
1
), p.
106646
.
83.
Lee
,
D.
, and
Pan
,
R.
,
2018
, “
A Nonparametric Bayesian Network Approach to Assessing System Reliability at Early Design Stages
,”
Reliab. Eng. Syst. Saf.
,
171
(
1
), pp.
57
66
.
84.
LHer
,
G.
,
Bossuyt
,
D. L. V.
, and
OHalloran
,
B. M.
,
2017
, “
Prognostic Systems Representation in a Function-Based Bayesian Model During Engineering Design
,”
Int. J. Prog. Health Manage.
,
8
(
2
), p.
2017029
.
85.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Resilience Allocation for Early Stage Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091402
.
86.
Yang
,
Y.
,
Chadha
,
M.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2022
, “
An Optimal Sensor Placement Design Framework for Structural Health Monitoring Using Bayes Risk
,”
Mech. Syst. Signal Process.
,
168
(
1
), p.
108618
.
87.
Abaei
,
M. M.
,
Hekkenberg
,
R.
, and
BahooToroody
,
A.
,
2021
, “
A Multinomial Process Tree for Reliability Assessment of Machinery in Autonomous Ships
,”
Reliab. Eng. Syst. Saf.
,
210
(
1
), p.
107484
.
88.
Chen
,
L.
, and
Cai
,
J.
,
2003
, “
Using Vector Projection Method to Evaluate Maintainability of Mechanical System in Design Review
,”
Reliab. Eng. Syst. Saf.
,
81
(
2
), pp.
147
154
.
89.
Ormon
,
S.
,
Cassady
,
C.
, and
Greenwood
,
A.
,
2002
, “
Reliability Prediction Models to Support Conceptual Design
,”
IEEE Trans. Reliab.
,
51
(
2
), pp.
151
157
.
90.
Liu
,
M.
,
Maute
,
K.
, and
Frangopol
,
D. M.
,
2007
, “
Multi-Objective Design Optimization of Electrostatically Actuated Microbeam Resonators With and Without Parameter Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
92
(
10
), pp.
1333
1343
.
91.
Hu
,
Y.
,
Miao
,
X.
,
Si
,
Y.
,
Pan
,
E.
, and
Zio
,
E.
,
2022
, “
Prognostics and Health Management: A Review From the Perspectives of Design, Development and Decision
,”
Reliab. Eng. Syst. Saf.
,
217
(
1
), p.
108063
.
92.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
(
1
), pp.
346
361
.
93.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
1
), pp.
686
707
.
94.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
(
1
), p.
112732
.
95.
Lagergren
,
J. H.
,
Nardini
,
J. T.
,
Baker
,
R. E.
,
Simpson
,
M. J.
, and
Flores
,
K. B.
,
2020
, “
Biologically-Informed Neural Networks Guide Mechanistic Modeling From Sparse Experimental Data
,”
PLoS Comput. Biol.
,
16
(
12
), p.
e1008462
.
96.
Yucesan
,
Y. A.
, and
Viana
,
F. A.
,
2021
, “
Hybrid Physics-Informed Neural Networks for Main Bearing Fatigue Prognosis With Visual Grease Inspection
,”
Comput. Ind.
,
125
(
1
), p.
103386
.
97.
Kim
,
J.
, and
Kim
,
H. M.
,
2020
, “
Impact of Generational Commonality of Short Life Cycle Products in Manufacturing and Remanufacturing Processes
,”
ASME J. Mech. Des.
,
142
(
12
), p.
122001
.
98.
Aydin
,
R.
, and
Badurdeen
,
F.
,
2019
, “
Sustainable Product Line Design Considering a Multi-Lifecycle Approach
,”
Resour. Conserv. Recycl.
,
149
(
1
), pp.
727
737
.
99.
Takai
,
S.
,
2019
, “
An Approach to Integrate Commonality and Product Family Design With Inventory Decisions
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031704
.
100.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
0910081
.
101.
Darghouth
,
M. N.
,
Ait-kadi
,
D.
, and
Chelbi
,
A.
,
2017
, “
Joint Optimization of Design, Warranty and Price for Products Sold With Maintenance Service Contracts
,”
Reliab. Eng. Syst. Saf.
,
165
(
1
), pp.
197
208
.
102.
Wu
,
S.
,
Yang
,
J.
,
Peng
,
R.
, and
Zhai
,
Q.
,
2021
, “
Optimal Design of Facility Allocation and Maintenance Strategy for a Cellular Network
,”
Reliab. Eng. Syst. Saf.
,
205
(
1
), p.
107253
.
103.
Vitayasak
,
S.
,
Pongcharoen
,
P.
, and
Hicks
,
C.
,
2019
, “
Robust Machine Layout Design Under Dynamic Environment: Dynamic Customer Demand and Machine Maintenance
,”
Expert Syst. Appl.: X
,
3
(
1
), p.
100015
.
104.
Wang
,
Q.
,
Tang
,
D.
,
Li
,
S.
,
Yang
,
J.
,
Salido
,
M.
,
Giret
,
A.
, and
Zhu
,
H.
,
2019
, “
An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products
,”
Sustainability
,
11
(
2
), p.
460
.
105.
Chiu
,
M.-C.
, and
Okudan
,
G.
,
2011
, “
An Integrative Methodology for Product and Supply Chain Design Decisions at the Product Design Stage
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021008
.
106.
Takai
,
S.
,
2021
, “
An Approach to Integrate Product and Process Design Using Augmented Liaison Diagram, Assembly Sequencing, and Assembly Line Balancing
,”
ASME J. Mech. Des.
,
143
(
10
), p.
102002
.
107.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B. P.
,
Singh
,
A. K.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
.
108.
Kim
,
J.
,
Saidani
,
M.
, and
Kim
,
H. M.
,
2021
, “
Designing an Optimal Modular-Based Product Family Under Intellectual Property and Sustainability Considerations
,”
ASME J. Mech. Des.
,
143
(
11
), p.
112002
.
109.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
110.
Monga
,
A.
, and
Zuo
,
M. J.
,
2001
, “
Optimal Design of Series-Parallel Systems Considering Maintenance and Salvage Value
,”
Comput. Ind. Eng.
,
40
(
4
), pp.
323
337
.
111.
Adjoul
,
O.
,
Benfriha
,
K.
,
Zant
,
C. E.
, and
Aoussat
,
A.
,
2021
, “
Algorithmic Strategy for Simultaneous Optimization of Design and Maintenance of Multi-Component Industrial Systems
,”
Reliab. Eng. Syst. Saf.
,
208
(
1
), p.
107364
.
112.
Wang
,
Z.
,
Huang
,
H.-Z.
, and
Du
,
X.
,
2009
, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.
113.
Lin
,
D.
,
Zuo
,
M. J.
,
Yam
,
R. C. M.
, and
Meng
,
M. Q.-H.
,
2000
, “
Optimal System Design Considering Warranty, Periodic Preventive Maintenance, and Minimal Repair
,”
J. Oper. Res. Soc.
,
51
(
7
), pp.
869
874
.
114.
Wang
,
P.
,
Long
,
Z.
, and
Dai
,
C.
,
2019
, “
A PHM Architecture of Maglev Train Based on the Distributed Hierarchical Structure
,”
2019 IEEE 28th International Symposium on Industrial Electronics (ISIE)
,
Vancouver, Canada
,
June 12–14
, pp.
1623
1626
.
115.
Yu
,
H.
,
Yalaoui
,
F.
,
Châtelet
,
Ė.
, and
Chu
,
C.
,
2007
, “
Optimal Design of a Maintainable Cold-Standby System
,”
Reliab. Eng. Syst. Saf.
,
92
(
1
), pp.
85
91
.
116.
Zhu
,
X.
,
Bei
,
X.
,
Chatwattanasiri
,
N.
, and
Coit
,
D. W.
,
2018
, “
Optimal System Design and Sequential Preventive Maintenance Under Uncertain Aperiodic-Changing Stresses
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
907
919
.
117.
Jennions
,
I. K.
,
Niculita
,
O.
, and
Esperon-Miguez
,
M.
,
2016
, “
Integrating IVHM and Asset Design
,”
Int. J. Progn. Health Manage.
,
7
(
2
), p.
2016028
.
118.
Yodo
,
N.
, and
Wang
,
P.
,
2016
, “
Engineering Resilience Quantification and System Design Implications: A Literature Survey
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111408
.
119.
Youn
,
B. D.
,
Hu
,
C.
, and
Wang
,
P.
,
2011
, “
Resilience-Driven System Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101011
.
120.
MacKenzie
,
C. A.
, and
Hu
,
C.
,
2019
, “
Decision Making Under Uncertainty for Design of Resilient Engineered Systems
,”
Reliab. Eng. Syst. Saf.
,
192
(
1
), p.
106171
.
121.
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
.
122.
Huang
,
P.
,
Huang
,
G.
, and
Sun
,
Y.
,
2018
, “
A Robust Design of Nearly Zero Energy Building Systems Considering Performance Degradation and Maintenance
,”
Energy
,
163
(
15
), pp.
905
919
.
123.
Wen
,
Y. K.
,
2001
, “
Minimum Lifecycle Cost Design Under Multiple Hazards
,”
Reliab. Eng. Syst. Saf.
,
73
(
3
), pp.
223
231
.
124.
Kang
,
N.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2015
, “
Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061402
.
125.
Zhu
,
X.
,
Wang
,
J.
, and
Yuan
,
T.
,
2019
, “
Design and Maintenance for the Data Storage System Considering System Rebuilding Process
,”
Reliab. Eng. Syst. Saf.
,
191
(
1
), p.
106576
.
126.
Endharta
,
A. J.
, and
Ko
,
Y. M.
,
2020
, “
Economic Design and Maintenance of a Circular k-Out-of-n: G Balanced System With Load-Sharing Units
,”
IEEE Trans. Reliab.
,
69
(
4
), pp.
1465
1479
.
127.
Kim
,
G.-H.
,
Smith
,
K.
,
Ireland
,
J.
, and
Pesaran
,
A.
,
2012
, “
Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems
,”
J. Power Sources
,
210
(
1
), pp.
243
253
.
128.
Li
,
M.
,
Nemani
,
V. P.
,
Liu
,
J.
,
Lee
,
M. A.
,
Ahmed
,
N.
,
Kremer
,
G. E.
, and
Hu
,
C.
,
2021
, “
Reliability-Informed Life Cycle Warranty Cost and Life Cycle Analysis of Newly Manufactured and Remanufactured Units
,”
ASME J. Mech. Des.
,
143
(
11
), p.
112001
.
129.
Yan
,
R.
,
Dunnett
,
S. J.
, and
Jackson
,
L. M.
,
2018
, “
Novel Methodology for Optimising the Design, Operation and Maintenance of a Multi-AGV System
,”
Reliab. Eng. Syst. Saf.
,
178
(
1
), pp.
130
139
.
130.
Yan
,
R.
,
Dunnett
,
S. J.
, and
Jackson
,
L. M.
,
2022
, “
Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems
,”
Reliab. Eng. Syst. Saf.
,
219
(
1
), p.
108264
.
131.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
132.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
133.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Chandrasegaran
,
S. K.
, and
Ramani
,
K.
,
2017
, “
Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111415
.
134.
Olsen
,
T. L.
, and
Tomlin
,
B.
,
2020
, “
Industry 4.0: Opportunities and Challenges for Operations Management
,”
Manuf. Serv. Oper. Manage.
,
22
(
1
), pp.
113
122
.
135.
Lin
,
Y.
, and
Zhou
,
L.
,
2011
, “
The Impacts of Product Design Changes on Supply Chain Risk: A Case Study
,”
Int. J. Phys. Distrib. Logist. Manage.
,
41
(
2
), pp.
162
186
.
136.
Tukamuhabwa
,
B. R.
,
Stevenson
,
M.
,
Busby
,
J.
, and
Zorzini
,
M.
,
2015
, “
Supply Chain Resilience: Definition, Review and Theoretical Foundations for Further Study
,”
Int. J. Prod. Res.
,
53
(
18
), pp.
5592
5623
.
137.
Tseng
,
M.-L.
,
Islam
,
M. S.
,
Karia
,
N.
,
Fauzi
,
F. A.
, and
Afrin
,
S.
,
2019
, “
A Literature Review on Green Supply Chain Management: Trends and Future Challenges
,”
Resour. Conserv. Recycl.
,
141
(
1
), pp.
145
162
.
138.
Peng
,
H.
,
Shen
,
N.
,
Liao
,
H.
,
Xue
,
H.
, and
Wang
,
Q.
,
2020
, “
Uncertainty Factors, Methods, and Solutions of Closed-Loop Supply Chain -- a Review for Current Situation and Future Prospects
,”
J. Cleaner Prod.
,
254
(
1
), p.
120032
.
139.
Zhang
,
F.
, and
Gong
,
Z.
,
2021
, “
Supply Chain Inventory Collaborative Management and Information Sharing Mechanism Based on Cloud Computing and 5 g Internet of Things
,”
Math. Probl. Eng.
,
2021
(
1
), pp.
1
12
.
140.
Bousdekis
,
A.
,
Magoutas
,
B.
,
Apostolou
,
D.
, and
Mentzas
,
G.
,
2018
, “
Review, Analysis and Synthesis of Prognostic-Based Decision Support Methods for Condition Based Maintenance
,”
J. Intell. Manuf.
,
29
(
6
), pp.
1303
1316
.
141.
Sakib
,
N.
, and
Wuest
,
T.
,
2018
, “
Challenges and Opportunities of Condition-Based Predictive Maintenance: A Review
,”
Proc. CIRP.
,
78
(
1
), pp.
267
272
.
142.
Knofius
,
N.
,
van der Heijden
,
M. C.
, and
Zijm
,
W. H.
,
2019
, “
Consolidating Spare Parts for Asset Maintenance With Additive Manufacturing
,”
Int. J. Prod. Econ.
,
208
(
1
), pp.
269
280
.
143.
Rezaeianjouybari
,
B.
, and
Shang
,
Y.
,
2020
, “
Deep Learning for Prognostics and Health Management: State of the Art, Challenges, and Opportunities
,”
Measurement
,
163
(
1
), p.
107929
.
144.
Tsui
,
K. L.
,
Chen
,
N.
,
Zhou
,
Q.
,
Hai
,
Y.
, and
Wang
,
W.
,
2015
, “
Prognostics and Health Management: A Review on Data Driven Approaches
,”
Math. Probl. Eng.
,
2015
(
1
), pp.
1
17
.
145.
Hellweg
,
S.
, and
Milà i Canals
,
L.
,
2014
, “
Emerging Approaches, Challenges and Opportunities in Life Cycle Assessment
,”
Science
,
344
(
6188
), pp.
1109
1113
.
146.
Tavana
,
M.
,
Fallahpour
,
A.
,
Di Caprio
,
D.
, and
Santos-Arteaga
,
F. J.
,
2016
, “
A Hybrid Intelligent Fuzzy Predictive Model With Simulation for Supplier Evaluation and Selection
,”
Expert Syst. Appl.
,
61
(
1
), pp.
129
144
.
147.
Ogliari
,
E.
,
Grimaccia
,
F.
,
Leva
,
S.
, and
Mussetta
,
M.
,
2013
, “
Hybrid Predictive Models for Accurate Forecasting in PV Systems
,”
Energies
,
6
(
4
), pp.
1918
1929
.
148.
Willard
,
J.
,
Jia
,
X.
,
Xu
,
S.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2020
, “Integrating Physics-Based Modeling With Machine Learning: A Survey,” preprint arXiv:2003.04919, 1(1), pp.
1
34
.
You do not currently have access to this content.