Abstract

This paper proposes a detailed methodology for constructing an additive manufacturing (AM) digital twin for the laser powder bed fusion (LPBF) process. An important aspect of the proposed digital twin is the incorporation of model uncertainty and process variability. A virtual representation of the LPBF process is first constructed using a physics-based model. To enable faster computation required in uncertainty analysis and decision-making, the physics-based model is replaced by a cheaper surrogate model. A two-step surrogate model is proposed when the quantity of interest is not directly observable during manufacturing. The data collected from the monitoring sensors are used for diagnosis (of current part quality) and passed on to the virtual representation for model updating. The model updating consists of Bayesian calibration of the uncertain parameters and the discrepancy term representing the model prediction error. The resulting digital twin is thus tailored for the particular individual part being produced and is used for probabilistic process parameter optimization (initial, before starting the printing) and online, real-time adjustment of the LPBF process parameters, in order to control the porosity in the manufactured part. A robust design optimization formulation is used to minimize the mean and standard deviation of the difference between the target porosity and the predicted porosity. The proposed methodology includes validation of the digital twin in two stages. Validation of the initial model in the digital twin is performed using available data, whereas data collected during manufacturing are used to validate the overall digital twin.

References

1.
Rezaeifar
,
H.
, and
Elbestawi
,
M.
,
2022
, “
Porosity Formation Mitigation in Laser Powder Bed Fusion Process Using a Control Approach
,”
Opt. Laser Technol.
,
147
, p.
107611
.
2.
Wei
,
H.
,
Mukherjee
,
T.
,
Zhang
,
W.
,
Zuback
,
J.
,
Knapp
,
G.
,
De
,
A.
, and
DebRoy
,
T.
,
2021
, “
Mechanistic Models for Additive Manufacturing of Metallic Components
,”
Prog. Mater. Sci.
,
116
, p.
100703
.
3.
Nalajam
,
P. K.
, and
Varadarajan
,
R.
,
2021
, “
A Hybrid Deep Learning Model for Layer-Wise Melt Pool Temperature Forecasting in Wire-Arc Additive Manufacturing Process
,”
IEEE Access
,
9
, pp.
100652
100664
.
4.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
.
5.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
6.
Moges
,
T.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Ameta
,
G.
,
2021
, “
On Characterizing Uncertainty Sources in Laser Powder-Bed Fusion Additive Manufacturing Models
,”
ASCE–ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011110
.
7.
Pandita
,
P.
,
Ghosh
,
S.
,
Gupta
,
V. K.
,
Meshkov
,
A.
, and
Wang
,
L.
,
2021
, “
Application of Deep Transfer Learning and Uncertainty Quantification for Process Identification in Powder Bed Fusion
,”
ASCE–ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011106
.
8.
Zhang
,
Y.
,
Karnati
,
S.
,
Nag
,
S.
,
Johnson
,
N.
,
Khan
,
G.
, and
Ribic
,
B.
,
2021
, “
Accelerating Additive Design With Probabilistic Machine Learning
,”
ASCE–ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011109
.
9.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2019
, “
Uncertainty Quantification of Grain Morphology in Laser Direct Metal Deposition
,”
Modell. Simul. Mater. Sci. Eng.
,
27
(
4
), p.
044003
.
10.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081004
.
11.
Nath
,
P.
,
Olson
,
J. D.
,
Mahadevan
,
S.
, and
Lee
,
Y.-T. T.
,
2020
, “
Optimization of Fused Filament Fabrication Process Parameters Under Uncertainty to Maximize Part Geometry Accuracy
,”
Addit. Manuf.
,
35
, p.
101331
.
12.
McCann
,
R.
,
Obeidi
,
M. A.
,
Hughes
,
C.
,
Vijayaraghavan
,
R. K.
,
Joshi
,
A. M.
,
Garzon
,
V. A.
,
Dowling
,
D. P.
,
McNally
,
P. J.
, et al.,
2021
, “
In-situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review
,”
Addit. Manuf.
,
45
, p.
102058
.
13.
Megahed
,
M.
,
Mindt
,
H.-W.
,
Willems
,
J.
,
Dionne
,
P.
,
Jacquemetton
,
L.
,
Craig
,
J.
,
Ranade
,
P.
, and
Peralta
,
A.
,
2019
, “
LPBF Right the First Time – The Right Mix Between Modeling and Experiments
,”
Int. Mater. Manuf. Innovat.
,
8
(
2
), pp.
194
216
.
14.
Yavari
,
R.
,
Riensche
,
A.
,
Tekerek
,
E.
,
Jacquemetton
,
L.
,
Halliday
,
H.
,
Vandever
,
M.
,
Tenequer
,
A.
,
Perumal
,
V.
,
Kontsos
,
A.
,
Smoqi
,
Z.
, et al.,
2021
, “
Digitally Twinned Additive Manufacturing: Detecting Flaws in Laser Powder Bed Fusion by Combining Thermal Simulations With In-Situ Meltpool Sensor Data
,”
Mater. Des.
,
211
, p.
110167
.
15.
Wang
,
Q.
,
Li
,
J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
, and
Mitchell
,
W.
,
2018
, “Build Height Control in Directed Energy Deposition Using a Model-Based Feed-Forward Controller,” Dynamic Systems and Control Conference, Vol. 51906, American Society of Mechanical Engineers, Paper No. V002T23A003.
16.
Zhu
,
Q.
,
Yu
,
K.
,
Li
,
H.
,
Zhang
,
Q.
, and
Tu
,
D.
,
2021
, “
Rapid Residual Stress Prediction and Feedback Control During Fused Deposition Modeling of PLA
,”
Int. J. Adv. Manuf. Technol.
,
118
(
9
), pp.
1
12
.
17.
Nath
,
P.
, and
Mahadevan
,
S.
,
2021
, “
Probabilistic Predictive Control of Porosity in Laser Powder Bed Fusion
,”
J. Intel. Manufact.
, pp.
1
19
.
18.
Gunasegaram
,
D.
,
Murphy
,
A.
,
Matthews
,
M.
, and
DebRoy
,
T.
,
2021
, “
The Case for Digital Twins in Metal Additive Manufacturing
,”
J. Phys.: Mater.
,
4
(
4
), p.
040401
.
19.
Debroy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S. S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
.
20.
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2019
, “
A Digital Twin for Rapid Qualification of 3D Printed Metallic Components
,”
Appl. Mater. Today
,
14
, pp.
59
65
.
21.
Papacharalampopoulos
,
A.
, and
Stavropoulos
,
P.
,
2019
, “
Towards a Digital Twin for Thermal Processes: Control-Centric Approach
,”
Proc. CIRP
,
86
, pp.
110
115
.
22.
Bartsch
,
K.
,
Pettke
,
A.
,
Hübert
,
A.
,
Lakämper
,
J.
, and
Lange
,
F.
,
2021
, “
On the Digital Twin Application and the Role of Artificial Intelligence in Additive Manufacturing: a Systematic Review
,”
J. Phys.: Mater.
,
4
, p.
032005
.
23.
Zhang
,
L.
,
Chen
,
X.
,
Zhou
,
W.
,
Cheng
,
T.
,
Chen
,
L.
,
Guo
,
Z.
,
Han
,
B.
, and
Lu
,
L.
,
2020
, “
Digital Twins for Additive Manufacturing: A State-of-the-Art Review
,”
Appl. Sci.
,
10
(
23
), p.
8350
.
24.
Gunasegaram
,
D.
,
Murphy
,
A.
,
Barnard
,
A.
,
DebRoy
,
T.
,
Matthews
,
M.
,
Ladani
,
L.
, and
Gu
,
D.
,
2021
, “
Towards Developing Multiscale-Multiphysics Models and Their Surrogates for Digital Twins of Metal Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102089
.
25.
Stavropoulos
,
P.
,
Papacharalampopoulos
,
A.
,
Michail
,
C. K.
, and
Chryssolouris
,
G.
,
2021
, “
Robust Additive Manufacturing Performance Through a Control Oriented Digital Twin
,”
Metals
,
11
(
5
), p.
708
.
26.
Xi
,
Z.
,
2022
, “
Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty
,”
ASCE–ASME J. Risk Uncert. Eng. Syst. Part B Mech. Eng.
,
8
(
1
), p.
011103
.
27.
Grieves
,
M.
,
2011
, Virtually Perfect: Driving Innovative and Lean Products Through Product Lifecycle Management, Space Coast Press, Cocoa Beach, FL.
28.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
,
1
, pp.
1
7
.
29.
Lee
,
E. A.
, and
Seshia
,
S. A.
,
2016
,
Introduction to Embedded Systems: A Cyber–Physical Systems Approach
,
MIT Press
,
Cambridge, MA
.
30.
Ashton
,
K.
,
2009
, “
That ‘Internet of Things’ Thing
,”
RFID J.
,
22
(
7
), pp.
97
114
.
31.
VanDerHorn
,
E.
, and
Mahadevan
,
S.
,
2021
, “
Digital Twin: Generalization, Characterization and Implementation
,”
Decision Support Syst.
,
145
, p.
113524
.
32.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
33.
Li
,
J.
,
Wang
,
Q.
,
Michaleris
,
P. P.
,
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2017
, “
An Extended Lumped-Parameter Model of Melt-Pool Geometry to Predict Part Height for Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091016
.
34.
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-track/Multi-layer L-PBF
,”
Int. J. Heat Mass Transfer
,
139
, pp.
95
114
.
35.
Bruna-Rosso
,
C.
,
Demir
,
A. G.
, and
Previtali
,
B.
,
2018
, “
Selective Laser Melting Finite Element Modeling: Validation With High-Speed Imaging and Lack of Fusion Defects Prediction
,”
Mater. Des.
,
156
, pp.
143
153
.
36.
Sharma
,
A.
,
Chen
,
J.
,
Diewald
,
E.
,
Imanian
,
A.
,
Beuth
,
J.
, and
Liu
,
Y.
,
2021
, “
Data-Driven Sensitivity Analysis for Static Mechanical Properties of Additively Manufactured Ti-6AL-4V
,”
J. ASCE–ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
7
), p.
011108
.
37.
Kapusuzoglu
,
B.
, and
Mahadevan
,
S.
,
2021
, “
Information Fusion and Machine Learning for Sensitivity Analysis Using Physics Knowledge and Experimental Data
,”
Reliab. Eng. Syst. Saf.
,
214
, p.
107712
.
38.
Vastola
,
G.
,
Pei
,
Q.
, and
Zhang
,
Y.-W.
,
2018
, “
Predictive Model for Porosity in Powder-Bed Fusion Additive Manufacturing at High Beam Energy Regime
,”
Addit. Manuf.
,
22
, pp.
817
822
.
39.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Welding J.
,
20
, pp.
220
234
.
40.
Bayat
,
M.
,
Thanki
,
A.
,
Mohanty
,
S.
,
Witvrouw
,
A.
,
Yang
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
, and
Hattel
,
J. H.
,
2019
, “
Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation
,”
Addit. Manuf.
,
30
, p.
100835
.
41.
Wacker
,
C.
,
Köhler
,
M.
,
David
,
M.
,
Aschersleben
,
F.
,
Gabriel
,
F.
,
Hensel
,
J.
,
Dilger
,
K.
, and
Dröder
,
K.
,
2021
, “
Geometry and Distortion Prediction of Multiple Layers for Wire Arc Additive Manufacturing With Artificial Neural Networks
,”
Appl. Sci.
EP,
11
(
10
), p.
4694
.
42.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9
), pp.
3591
3603
.
43.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
44.
Pronzato
,
L.
,
2017
, “
Minimax and Maximin Space-Filling Designs: Some Properties and Methods for Construction
,”
J. Soc. Française Stat.
,
158
(
1
), pp.
7
36
.
45.
Husslage
,
B. G.
,
Rennen
,
G.
,
Van Dam
,
E. R.
, and
Den Hertog
,
D.
,
2011
, “
Space-Filling Latin Hypercube Designs for Computer Experiments
,”
Optim. Eng.
,
12
(
4
), pp.
611
630
.
46.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
47.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
48.
National Aeronautics and Space Administration
,
2008
, Standard for Models and Simulation—NASA Technical Standard, NASA-STD-7009.
49.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
217
231
.
50.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2008
, “
Computational Methods for Model Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1197
1207
.
51.
NIST
, “
Additive Manufacturing Benchmark Test Series (AM-Bench)
.” Accessed May 29, 2019, https://www.nist.gov/ambench.
52.
Zheng
,
L.
,
Zhang
,
Q.
,
Cao
,
H.
,
Wu
,
W.
,
Ma
,
H.
,
Ding
,
X.
,
Yang
,
J.
,
Duan
,
X.
, and
Fan
,
S.
,
2019
, “
Melt Pool Boundary Extraction and Its Width Prediction From Infrared Images in Selective Laser Melting
,”
Mater. Des.
,
183
, p.
108110
.
53.
Lane
,
B.
,
Whitenton
,
E.
, and
Moylan
,
S.
,
2016
, “
Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion
,”
Thermosense: Thermal Infrared Applications XXXVIII
,
Baltimore, MD
, May 11, Vol.
9861
,
International Society for Optics and Photonics
, p.
986104
.
54.
Sampson
,
R.
,
Lancaster
,
R.
,
Sutcliffe
,
M.
,
Carswell
,
D.
,
Hauser
,
C.
, and
Barras
,
J.
,
2020
, “
An Improved Methodology of Melt Pool Monitoring of Direct Energy Deposition Processes
,”
Opt. Laser Technol.
,
127
, p.
106194
.
55.
Bao
,
Y.
, and
Mahadevan
,
S.
,
2015
, “
Uncertainty Quantification of Thermal Image-Based Concrete Diagnosis
,”
Int. J. Sustain. Mater. Struct. Syst.
,
2
(
1–2
), pp.
77
95
.
56.
Gaikwad
,
A.
,
Imani
,
F.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2019
, “
Design Rules and In-Situ Quality Monitoring of Thin-Wall Features Made Using Laser Powder Bed Fusion
,” International Manufacturing Science and Engineering Conference, Vol.
58745
,
American Society of Mechanical Engineers
, Paper No. V001T01A039.
57.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
58.
Sankararaman
,
S.
,
Ling
,
Y.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.
59.
Gilks
,
W. R.
,
2005
, “
Markov Chain Monte Carlo
,” Encyclopedia of Biostatistics, Advances Online Publication, John Wiley & Sons Ltd.
60.
Doucet
,
A.
,
De Freitas
,
N.
, and
Gordon
,
N.
,
2001
, “
An Introduction to Sequential Monte Carlo Methods
,”
Sequential Monte Carlo Methods in Practice
, A. Doucet, ed.,
Springer
,
New York
, pp.
3
14
.
61.
Kapusuzoglu
,
B.
,
Nath
,
P.
,
Sato
,
M.
,
Mahadevan
,
S.
, and
Witherell
,
P.
,
2022
, “
Multi-objective Optimization Under Uncertainty of Part Quality in Fused Filament Fabrication
,”
ASCE–ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011112
.
62.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
63.
Zaman
,
K.
,
McDonald
,
M.
,
Mahadevan
,
S.
, and
Green
,
L.
,
2011
, “
Robustness-Based Design Optimization Under Data Uncertainty
,”
Struct. Multidiscipl. Optim.
,
44
(
2
), pp.
183
197
.
64.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2017
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscipl. Optim.
,
55
(
2
), pp.
681
699
.
65.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T.
,
2015
, “
Effect of Inter-layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
, pp.
123
131
.
66.
Mohr
,
G.
,
Altenburg
,
S. J.
, and
Hilgenberg
,
K.
,
2020
, “
Effects of Inter Layer Time and Build Height on Resulting Properties of 316L Stainless Steel Processed by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
32
, p.
101080
.
67.
Lee
,
Y.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
, pp.
178
188
.
68.
Ling
,
Y.
,
Mullins
,
J.
, and
Mahadevan
,
S.
,
2014
, “
Selection of Model Discrepancy Priors in Bayesian Calibration
,”
J. Comput. Phys.
,
276
, pp.
665
680
.
You do not currently have access to this content.