Abstract

We present a novel dehomogenization approach for the efficient design of high-resolution load-bearing structures. The proposed approach builds upon a streamline-based parametrization of the design domain, using a set of space-filling and evenly spaced streamlines in the two mutually orthogonal direction fields that are obtained from homogenization-based topology optimization. Streamlines in these fields are converted into a graph, which is then used to construct a quad-dominant mesh whose edges follow the direction fields. In addition, the edge width is adjusted according to the density and anisotropy of the optimized orthotropic cells. In a number of numerical examples, we demonstrate the mechanical performance and regular appearance of the resulting structural designs and compare them with those from classic and contemporary approaches.

References

1.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin, Heidelberg
2.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
5.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscipl. Optim.
,
21
(
2
), pp.
120
127
.
6.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1
), pp.
227
246
.
7.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
8.
Xie
,
Y.
, and
Steven
,
G.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
9.
Norato
,
J.
,
Haber
,
R.
,
Tortorelli
,
D.
, and
Bendsøe
,
M. P.
,
2004
, “
A Geometry Projection Method for Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2289
2312
.
10.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
11.
Pantz
,
O.
, and
Trabelsi
,
K.
,
2008
, “
A Post-Treatment of the Homogenization Method for Shape Optimization
,”
SIAM J. Control Optim.
,
47
(
3
), pp.
1380
1398
.
12.
Groen
,
J. P.
, and
Sigmund
,
O.
,
2018
, “
Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1148
1163
.
13.
Allaire
,
G.
,
Geoffroy-Donders
,
P.
, and
Pantz
,
O.
,
2019
, “
Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
Comput. Math. Appl.
,
78
(
7
), pp.
2197
2229
.
14.
Groen
,
J. P.
,
Stutz
,
F. C.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2020
, “
De-homogenization of Optimal Multi-scale 3D Topologies
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112979
.
15.
Geoffroy-Donders
,
P.
,
Allaire
,
G.
, and
Pantz
,
O.
,
2020
, “
3-D Topology Optimization of Modulated and Oriented Periodic Microstructures by the Homogenization Method
,”
J. Comput. Phys.
,
401
, p.
108994
.
16.
Stutz
,
F. C.
,
Groen
,
J. P.
,
Sigmund
,
O.
, and
Bærentzen
,
J. A.
,
2020
, “
Singularity Aware De-homogenization for High-Resolution Topology Optimized Structures
,”
Struct. Multidiscipl. Optim.
,
62
, pp.
2279
2295
.
17.
Groen
,
J. P.
,
Wu
,
J.
, and
Sigmund
,
O.
,
2019
, “
Homogenization-Based Stiffness Optimization and Projection of 2D Coated Structures With Orthotropic Infill
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
722
742
.
18.
Wu
,
J.
,
Wang
,
W.
, and
Gao
,
X.
,
2021
, “
Design and Optimization of Conforming Lattice Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
27
(
1
), pp.
43
56
.
19.
Stutz
,
F. C.
,
Olsen
,
T. F.
,
Groen
,
J. P.
,
Aage
,
N.
,
Sigmund
,
O.
,
Solomon
,
J.
, and
Bærentzen
,
J. A.
,
2022
, “
Synthesis of Frame Field-Aligned Multi-laminar Structures
,”
ACM Trans. Graph.
,
41
(
5
), pp.
1
20
.
20.
Elingaard
,
M. O.
,
Aage
,
N.
,
Bærentzen
,
J. A.
, and
Sigmund
,
O.
,
2022
, “
De-Homogenization Using Convolutional Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
388
, p.
114197
.
21.
Lee
,
J.
,
Kwon
,
C.
,
Yoo
,
J.
,
Min
,
S.
,
Nomura
,
T.
, and
Dede
,
E. M.
,
2021
, “
Design of Spatially-Varying Orthotropic Infill Structures Using Multiscale Topology Optimization and Explicit De-Homogenization
,”
Addit. Manuf.
,
40
, p.
101920
.
22.
Zhu
,
Y.
,
Li
,
S.
,
Du
,
Z.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach Towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids
,
124
, pp.
612
633
.
23.
Kratz
,
A.
,
Schoeneich
,
M.
,
Zobel
,
V.
,
Burgeth
,
B.
,
Scheuermann
,
G.
,
Hotz
,
I.
, and
Stommel
,
M.
,
2014
, “
Tensor Visualization Driven Mechanical Component Design
,”
IEEE Pacific Visualization Symposium
,
Yokohama, Japan
,
Mar. 4–7
.
24.
Kwok
,
T.-H.
,
Li
,
Y.
, and
Chen
,
Y.
,
2016
, “
A Structural Topology Design Method Based on Principal Stress Line
,”
Comput.-Aided Des.
,
80
, pp.
19
31
.
25.
Wang
,
J.
,
Wu
,
J.
, and
Westermann
,
R.
,
2022
, “
Stress Trajectory Guided Structural Design and Topology Optimization
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
26.
Loos
,
S.
,
Wolk
,
S. v. d.
,
Graaf
,
N. d.
,
Hekkert
,
P.
, and
Wu
,
J.
,
2022
, “
Towards Intentional Aesthetics Within Topology Optimization by Applying the Principle of Unity-in-Variety
,”
Struct. Multidiscipl. Optim.
,
65
(
7
), p.
1851
.
27.
Wu
,
J.
,
Sigmund
,
O.
, and
Groen
,
J. P.
,
2021
, “
Topology Optimization of Multi-scale Structures: A Review
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1455
1480
.
28.
Wang
,
J.
,
Neuhauser
,
C.
,
Wu
,
J.
,
Gao
,
X.
, and
Westermann
,
R.
,
2022
, “
3D-TSV: The 3D Trajectory-Based Stress Visualizer
,”
Adv. Eng. Softw.
,
170
, p.
103144
.
29.
Wang
,
J.
,
Wu
,
J.
, and
Westermann
,
R.
,
2022
, “
Stress Topology Analysis for Porous Infill Optimization
,”
Struct. Multidiscipl. Optim.
,
65
(
3
), pp.
1
13
.
30.
Delmarcelle
,
T.
, and
Hesselink
,
L.
,
1994
, “
The Topology of Symmetric, Second-Order Tensor Fields
,”
Proceedings Visualization’94
,
Washington, DC
,
Oct. 21
, IEEE, pp.
140
147
.
31.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing – Approaching Bone-Like Porous Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
2
), pp.
1127
1140
.
32.
Gao
,
X.
,
Jakob
,
W.
,
Tarini
,
M.
, and
Panozzo
,
D.
,
2017
, “
Robust Hex-Dominant Mesh Generation Using Field-Guided Polyhedral Agglomeration
,”
ACM Trans. Graph.
,
36
(
4
), pp.
114:1
114:13
.
You do not currently have access to this content.