Abstract

In the commercial freight industry, tire retreading decisions are often conservative due to limited knowledge of a tire’s remaining service life. This practice leads to increased costs and material waste. This paper proposes a machine learning–based approach for estimating tire casing life and retreadability, focusing on usage data rather than wear information. This approach could extend the tire’s lifespan and reduce landfill waste. Data integration from diverse tire casing measurement sources presents challenges, including imbalanced removal data. Our methodology addresses these challenges by using historical inspection, telematics, and finite element modeling (FEM) datasets. We introduce “Tire Casing Energy” as a comprehensive usage input and apply a Variance-Reduction Synthetic Minority Oversampling Technique (VR-SMOTE) for data imbalance rectification. A random forest model is used to estimate the state of the tire casing and the casing removal probability, with Bayesian optimization applied for hyperparameter tuning, enhancing model accuracy. The proposed prediction framework is able to differentiate different truck fleets and tire locations based on their usage parameters. With the aid of this machine learning model, the importance and sensitivity of different tire usage parameters can be obtained, which is beneficial to maximize tire life.

References

1.
Moraga
,
G.
,
Huysveld
,
S.
,
Mathieux
,
F.
,
Blengini
,
G. A.
,
Alaerts
,
L.
,
Van Acker
,
K.
,
de Meester
,
S.
, and
Dewulf
,
J.
,
2019
, “
Circular Economy Indicators: What Do They Measure?
,”
Resour. Conserv. Recycl.
,
146
, pp.
452
461
.
2.
Kirchherr
,
J.
,
Reike
,
D.
, and
Hekkert
,
M.
,
2017
, “
Conceptualizing the Circular Economy: An Analysis of 114 Definitions
,”
Resour. Conserv. Recycl.
,
127
, pp.
221
232
.
3.
Saidani
,
M.
,
Yannou
,
B.
,
Leroy
,
Y.
,
Cluzel
,
F.
, and
Kendall
,
A.
,
2019
, “
A Taxonomy of Circular Economy Indicators
,”
J. Clean. Prod.
,
207
, pp.
542
559
.
4.
Acerbi
,
F.
, and
Taisch
,
M.
,
2020
, “
A Literature Review on Circular Economy Adoption in the Manufacturing Sector
,”
J. Clean. Prod.
,
273
, p.
123086
.
5.
Global Tire Market Size—Industry Trends & Outlook Report 2027
.” https://www.blueweaveconsulting.com/report/global-tire-market-size-bwc20179, Accessed April 14, 2023.
6.
Global Tire Recycling Market Report—Edition 2020
.” https://www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis. Accessed April 14, 2023.
7.
Selonen
,
S.
,
Dolar
,
A.
,
Jemec Kokalj
,
A.
,
Sackey
,
L. N. A.
,
Skalar
,
T.
,
Cruz Fernandes
,
V.
,
Rede
,
D.
, et al
,
2021
, “
Exploring the Impacts of Microplastics and Associated Chemicals in the Terrestrial Environment—Exposure of Soil Invertebrates to Tire Particles
,”
Environ. Res.
,
201
, p.
111495
.
8.
Ferdous
,
W.
,
Manalo
,
A.
,
Siddique
,
R.
,
Mendis
,
P.
,
Zhuge
,
Y.
,
Wong
,
H. S.
,
Lokuge
,
W.
,
Aravinthan
,
T.
, and
Schubel
,
P.
,
2021
, “
Recycling of Landfill Wastes (Tyres, Plastics and Glass) in Construction—A Review on Global Waste Generation, Performance, Application and Future Opportunities
,”
Resour. Conserv. Recycl.
,
173
, p.
105745
.
9.
Pakdel
,
H.
,
Pantea
,
D. M.
, and
Roy
,
C.
,
2001
, “
Production of Dl-Limonene by Vacuum Pyrolysis of Used Tires
,”
J. Anal. Appl. Pyrolysis
,
57
(
1
), pp.
91
107
.
10.
Rodgers
,
B.
, and
Waddell
,
W.
,
2005
, “Tire Engineering,”
Science and Technology of Rubber
,
Elsevier
,
New York
, p.
619–II
.
11.
Lorenz
,
B.
,
Persson
,
B. N. J.
,
Fortunato
,
G.
,
Giustiniano
,
M.
, and
Baldoni
,
F.
,
2013
, “
Rubber Friction for Tire Tread Compound on Road Surfaces
,”
J. Phys.: Condens. Matter
,
25
(
9
), p.
095007
.
12.
Barbosa
,
L. A. P.
, and
Magalhães
,
P. S. G.
,
2015
, “
Tire Tread Pattern Design Trigger on the Stress Distribution Over Rigid Surfaces and Soil Compaction
,”
J. Terramech.
,
58
, pp.
27
38
.
13.
Lebreton
,
B.
, and
Tuma
,
A.
,
2006
, “
A Quantitative Approach to Assessing the Profitability of Car and Truck Tire Remanufacturing
,”
Int. J. Prod. Econ.
,
104
(
2
), pp.
639
652
.
14.
Simic
,
V.
, and
Dabic-Ostojic
,
S.
,
2017
, “
Interval-Parameter Chance-Constrained Programming Model for Uncertainty-Based Decision Making in Tire Retreading Industry
,”
J. Clean. Prod.
,
167
, pp.
1490
1498
.
15.
Sharma
,
N.
, and
Kalra
,
M.
,
2022
, “
Predictive Maintenance for Commercial Vehicles Tyres Using Machine Learning
,”
2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT)
,
Kharagpur, India
, Oct. 3, pp.
1
6
.
16.
Zhu
,
J.
,
Han
,
K.
, and
Wang
,
S.
,
2021
, “
Automobile Tire Life Prediction Based on Image Processing and Machine Learning Technology
,”
Adv. Mech. Eng.
,
13
(
3
), p.
168781402110027
.
17.
Sivamani
,
C.
,
Rajeswari
,
M.
,
Julie
,
E.
,
Robinson
,
Y.
,
Shanmuganathan
,
V.
,
Kadry
,
S.
, and
Nam
,
Y.
,
2021
, “
Tyre Inspection Through Multi-State Convolutional Neural Networks
,”
Intell. Autom. Soft Comput.
,
27
(
1
), pp.
1
13
.
18.
Cervantes
,
J.
,
Garcia-Lamont
,
F.
,
Rodríguez-Mazahua
,
L.
, and
Lopez
,
A.
,
2020
, “
A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends
,”
Neurocomputing
,
408
, pp.
189
215
.
19.
Haq
,
M. T.
,
Zlatkovic
,
M.
, and
Ksaibati
,
K.
,
2020
, “
Assessment of Tire Failure Related Crashes and Injury Severity on a Mountainous Freeway: Bayesian Binary Logit Approach
,”
Accid. Anal. Prev.
,
145
, p.
105693
.
20.
Arandia
,
I.
,
Cejudo
,
I.
,
Irigoyen
,
E.
,
Urbieta
,
I.
,
Arregui
,
H.
, and
Loyo
,
E.
,
2022
, “
Analyzing the Influence of Driver, Route and Vehicle-Related Factors in Electric Vehicle Energy Consumption, Based on Real Life Data
,”
Proceedings of the 2022 3rd International Conference on Robotics Systems and Vehicle Technology
,
Association for Computing Machinery, New York, NY, USA
, pp.
16
21
.
21.
Lee
,
D.
,
Kim
,
S.
,
Sung
,
K.
,
Park
,
J.
,
Lee
,
T.
, and
Huh
,
S.
,
2013
, “
A Study on the Fatigue Life Prediction of Tire Belt-Layers Using Probabilistic Method
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
673
678
.
22.
Nguyen
,
V. H.
,
Zheng
,
D.
,
Schmerwitz
,
F.
, and
Wriggers
,
P.
,
2018
, “
An Advanced Abrasion Model for Tire Wear
,”
Wear
,
396–397
, pp.
75
85
.
23.
Böttcher
,
M.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2022
, “
Quantification of Data and Production Uncertainties for Tire Design Parameters in the Frame of Robustness Evaluation
,”
Probabilistic Eng. Mech.
,
70
, p.
103357
.
24.
Jia
,
Z.
,
Liu
,
Z.
, and
Cai
,
Y.
,
2021
, “
A Novel Fault Diagnosis Method for Aircraft Actuator Based on Ensemble Model
,”
Measurement
,
176
, p.
109235
.
25.
Rausch
,
J.
,
Jaramillo-Vogel
,
D.
,
Perseguers
,
S.
,
Schnidrig
,
N.
,
Grobéty
,
B.
, and
Yajan
,
P.
,
2022
, “
Automated Identification and Quantification of Tire Wear Particles (TWP) in Airborne Dust: SEM/EDX Single Particle Analysis Coupled to a Machine Learning Classifier
,”
Sci. Total Environ.
,
803
, p.
149832
.
26.
Rodriguez
,
J. D.
,
Perez
,
A.
, and
Lozano
,
J. A.
,
2010
, “
Sensitivity Analysis of K-Fold Cross Validation in Prediction Error Estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
3
), pp.
569
575
.
27.
Wei
,
P.
,
Lu
,
Z.
, and
Song
,
J.
,
2015
, “
Variable Importance Analysis: A Comprehensive Review
,”
Reliab. Eng. Syst. Saf.
,
142
, pp.
399
432
.
28.
Altman
,
N.
, and
Krzywinski
,
M.
,
2017
, “
Ensemble Methods: Bagging and Random Forests
,”
Nat. Methods
,
14
(
10
), pp.
933
934
.
29.
Karkaria
,
V. N.
,
Karnadikar
,
A.
,
Joshi
,
S.
,
Abrish Aaditya
,
S. B.
, and
Karandikar
,
P. B.
,
2023
, “
EV Charging Infrastructure Development Using Machine Learning
,”
IEEE
, pp.
1
6
.
30.
Sun
,
D.
,
Wen
,
H.
,
Wang
,
D.
, and
Xu
,
J.
,
2020
, “
A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm
,”
Geomorphology
,
362
, p.
107201
.
31.
Van Beek
,
A.
,
Karkaria
,
V.
, and
Chen
,
W.
,
2023
, “
Digital Twins for the Designs of Systems: A Perspective
,”
Struct. Multidisc. Optim.
,
66
.
32.
Charnley
,
F.
,
Tiwari
,
D.
,
Hutabarat
,
W.
,
Moreno
,
M.
,
Okorie
,
O.
, and
Tiwari
,
A.
,
2019
, “
Simulation to Enable a Data-Driven Circular Economy
,”
Sustainability
,
11
(
12
), p.
3379
.
33.
Applied Sciences | Free Full-Text | An Efficient Method for Detecting Asphalt Pavement Cracks and Sealed Cracks Based on a Deep Data-Driven Model
.” https://www.mdpi.com/2076-3417/12/19/10089. Accessed August 21, 2023.
34.
Tsui
,
K. L.
,
Chen
,
N.
,
Zhou
,
Q.
,
Hai
,
Y.
, and
Wang
,
W.
,
2015
, “
Prognostics and Health Management: A Review on Data Driven Approaches
,”
Math. Probl. Eng.
,
2015
, p.
e793161
.
35.
Jakubowski
,
J.
, and
Fiołek
,
P.
,
2023
, “
Data-Driven Approach to Structural Analysis of Shaft Steelwork Under Corrosion
,”
Eng. Struct.
,
281
, p.
115741
.
36.
Smith
,
R. W.
,
1997
, “
The Microscopy of Catastrophic Tire Failures
,”
Rubber Chem. Technol.
,
70
(
2
), pp.
283
293
.
37.
Vaiana
,
R.
,
Capiluppi
,
G. F.
,
Gallelli
,
V.
,
Iuele
,
T.
, and
Minani
,
V.
,
2012
, “
Pavement Surface Performances Evolution: An Experimental Application
,”
Procedia Soc. Behav. Sci.
,
53
, pp.
1149
1160
.
38.
Zhou
,
J.
,
Hall
,
R. A.
,
Fowler
,
G.
, and
Huntingford
,
K.
,
2008
, “
Evaluation of the Effect of Off-the-Road Tire Air Pressure Setting on Tire Performance
,”
Int. J. Min. Reclam. Environ.
,
22
(
3
), pp.
237
244
.
39.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
40.
Zhu
,
T.
,
Lin
,
Y.
, and
Liu
,
Y.
,
2017
, “
Synthetic Minority Oversampling Technique for Multiclass Imbalance Problems
,”
Pattern Recogn.
,
72
, pp.
327
340
.
41.
Joy
,
T. T.
,
Rana
,
S.
,
Gupta
,
S.
, and
Venkatesh
,
S.
,
2020
, “
Fast Hyperparameter Tuning Using Bayesian Optimization With Directional Derivatives
,”
Knowl.-Based Syst.
,
205
, p.
106247
.
42.
Barua
,
S.
,
Islam
,
M. M.
, and
Murase
,
K.
,
2011
, “A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning,”
Neural Information Processing
,
B.-L.
Lu
,
L.
Zhang
, and
J.
Kwok
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
735
744
.
43.
Xiang
,
Z.
,
Su
,
Y.
,
Lan
,
J.
,
Li
,
D.
,
Hu
,
Y.
, and
Li
,
Z.
,
2020
, “
An Improved SMOTE Algorithm Using Clustering
,”
2020 Chinese Automation Congress (CAC)
,
Shanghai, China
, Nov. 6, pp.
1986
1991
.
44.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
SMOTE: Synthetic Minority Over-Sampling Technique
,”
J. Artif. Intell. Res.
,
16
, pp.
321
357
.
You do not currently have access to this content.