Abstract

Designing mechatronic products requires interdisciplinary skills and as products become more complex, the design of mechatronic systems plays a critical role. To minimize waste production and pollution, a shift toward a circular economy is necessary, with mechatronic products being particularly impacted by such policies. Repairing plays a key part in achieving a circular economy. Through repairability, the product lifespan can be extended, and combined with maintenance the rate of product replacement can be reduced. Within this context, the goal of this paper is to propose a design methodology (based on the EN 45554:2020 standard) for generating and implementing eco-design rules for disassembly and repair. The methodology has four phases, the first one is the identification of target components (those that are more likely to fail during the lifespan). The second phase encompasses the experimental disassembly analysis which can be manual or virtual. The third phase is the assessment of the disassemblability index which includes the analysis of parameters that affect the disassembly phase. The last phase is the implementation of the eco-design methodology for all the components that do not meet the minimum repairability requirements. A case study of electro-mechanical ovens is presented, targeting replaceable components. The results show that the use of this framework and the eco-design actions derived from it are successful in improving the repairability of the product and increasing the disassemblability index (30% on average) through a virtual analysis. A sensitivity analysis has been conducted to study the impact of parameter weight modification. This research contributes to advancing repairability and supporting the circular economy paradigm in mechatronic product design.

References

1.
Zheng
,
C.
,
Bricogne
,
M.
,
Le Duigou
,
J.
, and
Eynard
,
B.
,
2014
, “
Mechatronic Design Process: A Survey of Product Data Model
,”
Procedia CIRP
,
21
, pp.
282
287
.
2.
Penas
,
O.
,
Plateaux
,
R.
,
Patalano
,
S.
, and
Hammadi
,
M.
,
2017
, “
Multi-Scale Approach From Mechatronic to Cyber-Physical Systems for the Design of Manufacturing Systems
,”
Comput. Ind.
,
86
, pp.
52
69
.
3.
De Fazio
,
F.
,
Bakker
,
C.
,
Flipsen
,
B.
, and
Balkenende
,
R.
,
2021
, “
The Disassembly Map: A New Method to Enhance Design for Product Repairability
,”
J. Clean. Prod.
,
320
, p.
128552
.
4.
Cooper
,
T.
,
2005
, “
Slower Consumption Reflections on Product Life Spans and the “Throwaway Society”
,”
J. Ind. Ecol.
,
9
(
1–2
), pp.
51
67
.
5.
Bocken
,
N. M. P.
,
de Pauw
,
I.
,
Bakker
,
C.
, and
van der Grinten
,
B.
,
2016
, “
Product Design and Business Model Strategies for a Circular Economy
,”
J. Ind. Prod. Eng.
,
33
(
5
), pp.
308
320
.
6.
Bracquene
,
E.
,
Peeters
,
J.
,
Burez
,
J.
,
De Schepper
,
K.
,
Duflou
,
J. R.
, and
Dewulf
,
W.
,
2019
, “
Repairability Evaluation for Energy Related Products
,”
Procedia CIRP
,
80
, pp.
536
541
.
7.
Sanfelix
,
J.
,
Cordella
,
M.
, and
Alfieri
,
F.
,
2019
, “
Methods for the Assessment of the Reparability and Upgradability of Energy-Related Products: Application to TVs Final Report
,” European Commission Publications Office, Seville, Spain.
8.
Flipsen
,
B.
,
Huisken
,
M.
,
Opsomer
,
T.
, and
Depypere
,
M.
,
2019
, “
IFIXIT Smartphone Reparability Scoring: Assessing the Self-Repair Potential of Mobile ICT Devices
,”
PLATE Conference 2019
,
Berlin, Germany
,
Sept. 18– 20
.
9.
CSN EN 45554:2020—General Methods for the Assessment of the Ability to Repair, Reuse and Upgrade Energy-Related Products.
10.
ONR 192102
,
2014
, “
Label of Excellence for Durable, Repair Friendly, Designed Electrical and Electronic Appliances
,” Beuth Publishing, Berlin, Germany.
11.
Ademe
,
M. H.
,
Ciarabelli
,
L.
,
Alma
,
D.
,
Eric
,
E. W. M.
,
Virginie
,
L.
,
Guillaume
,
D.
,
Benjamin
,
M.
, and
Astrid
,
L. F.
,
2018
, “
Benchmark International Du Secteur De La Reparation
,” Agemce de l’Environment, Paris, France.
12.
Dangal
,
S.
,
Faludi
,
J.
, and
Balkenende
,
R.
,
2022
, “
Design Aspects in Repairability Scoring Systems: Comparing Their Objectivity and Completeness
,”
Sustainability
,
14
(
14
), p.
8634
.
13.
Boix Rodríguez
,
N. B.
,
Gabriel
,
C.
,
Gaha
,
R.
, and
Favi
,
C.
,
2023
, “
Analysis of Disassembly Parameters in Repairability Scores: Limitations for Engineering Design and Suggestions for Improvement
,”
Procedia CIRP
,
116
, pp.
738
743
.
14.
Behdad
,
S.
,
Berg
,
L.
,
Vance
,
J.
, and
Thurston
,
D.
,
2014
, “
Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071001
.
15.
Cappelli
,
F.
,
Delogu
,
M.
,
Pierini
,
M.
, and
Schiavone
,
F.
,
2007
, “
Design for Disassembly: A Methodology for Identifying the Optimal Disassembly Sequence
,”
J. Eng. Des.
,
18
(
6
), pp.
563
575
.
16.
Nakamura
,
S.
, and
Kondo
,
Y.
,
2006
, “
A Waste Input–Output Life-Cycle Cost Analysis of the Recycling of End-of-Life Electrical Home Appliances
,”
Ecol. Econ.
,
57
(
3
), pp.
494
506
.
17.
Favi
,
C.
,
Germani
,
M.
,
Mandolini
,
M.
, and
Marconi
,
M.
,
2012
, “
Promoting and Managing End-of-Life Closed-Loop Scenarios of Products Using a Design for Disassembly Evaluation Tool
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Chicago, IL
,
Aug. 12–15
, Vol. 3, No. PARTS A AND B, pp.
1339
1348
.
18.
Favi
,
C.
,
Marconi
,
M.
,
Germani
,
M.
, and
Mandolini
,
M.
,
2019
, “
A Design for Disassembly Tool Oriented to Mechatronic Product De-Manufacturing and Recycling
,”
Adv. Eng. Inform.
,
39
, pp.
62
79
.
19.
Marconi
,
M.
,
Germani
,
M.
,
Mandolini
,
M.
, and
Favi
,
C.
,
2019
, “
Applying Data Mining Technique to Disassembly Sequence Planning: A Method to Assess Effective Disassembly Time of Industrial Products
,”
Int. J. Prod. Res.
,
57
(
2
), pp.
599
623
.
20.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041011
.
21.
Bracquené
,
E.
,
Peeters
,
J.
,
Alfieri
,
F.
,
Sanfélix
,
J.
,
Duflou
,
J.
,
Dewulf
,
W.
, and
Cordella
,
M.
,
2021
, “
Analysis of Evaluation Systems for Product Repairability: A Case Study for Washing Machines
,”
J. Clean. Prod.
,
281
, p.
125122
.
22.
Boix Rodríguez
,
N.
, and
Favi
,
C.
,
2022
, “
Disassembly Analysis of Gas Cooktops: Towards Eco-Design Rules for Product Repairability
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, Vol.
86250
, p.
V005T05A017
.
23.
Boix Rodríguez
,
N.
, and
Favi
,
C.
,
2022
, “
Eco-Design Guidelines Takeaways From the Analysis of Product Repairability and Ease of Disassembly: A Case Study for Electric Ovens
,”
Procedia CIRP
,
105
, pp.
595
600
.
24.
Ruiz-Pastor
,
L.
, and
Mesa
,
J. A.
,
2023
, “
Proposing an Integrated Indicator to Measure Product Repairability
,”
J. Clean. Prod.
,
395
(
2023
), p.
136434
.
25.
Woidasky
,
J.
, and
Cetinkaya
,
E.
,
2021
, “
Use Pattern Relevance for Laptop Repair and Product Lifetime
,”
J. Clean. Prod.
,
288
, pp.
125425
.
26.
Cordella
,
M.
,
Alfieri
,
F.
,
Clemm
,
C.
, and
Berwald
,
A.
,
2021
, “
Durability of Smartphones: A Technical Analysis of Reliability and Repairability Aspects
,”
J. Clean. Prod.
,
286
, pp.
125388
.
27.
Barros
,
M.
, and
Dimla
,
E.
,
2023
, “
Smartphone Repairability Indexes in Practice: Linking Repair Scores to Industrial Design Features
,”
J. Ind. Ecol.
,
27
(
3
), pp.
923
936
.
28.
Favi
,
C.
,
Germani
,
M.
,
Mandolini
,
M.
, and
Marconi
,
M.
,
2016
, “
Includes Knowledge of Dismantling Centers in the Early Design Phase: A Knowledge-Based Design for Disassembly Approach
,”
Procedia CIRP
,
48
, pp.
401
406
.
29.
Cordella
,
M.
,
Alfieri
,
F.
, and
Sanfelix Forner
,
J.
,
2019
, “
Analysis and Development of a Scoring System for Repair and Upgrade of Products, EUR 29711 EN
,” Publications Office of the European Union, Luxembourg
.
30.
Delleman
,
N. J.
, and
Dul
,
J.
,
2022
, “
Sewing Machine Operation: Workstation Adjustment, Working Posture, and Workers’ Perceptions
,”
Int. J. Ind. Ergon.
,
30
(
6
), pp.
341
353
.
31.
Formentini
,
G.
,
Favi
,
C.
,
Cuiller
,
C.
,
Dereux
,
P. E.
,
Bouissiere
,
F.
, and
Cédric
,
J.
,
2021
, “
Conceptual Design for Assembly in Aerospace Industry: Sensitivity Analysis of Mathematical Framework and Design Parameters
,”
Proceedings of the Design Society, Volume 1: ICED21
,
Gothenburg, Sweden
,
Aug. 16–20
, pp.
731
740
.
32.
Jacobs
,
C.
,
Soulliere
,
K.
,
Sawyer-Beaulieu
,
S.
,
Sabzwari
,
A.
, and
Tam
,
E.
,
2022
, “
Challenges to the Circular Economy: Recovering Wastes From Simple Versus Complex Products
,”
Sustainability
,
14
(
5
), pp.
2576
.
33.
Sodhi
,
R.
,
Sonnenberg
,
M.
, and
Das
,
S.
,
2004
, “
Evaluating the Unfastening Effort in Design for Disassembly and Serviceability
,”
J. Eng. Des.
,
15
(
1
), pp.
69
90
.
34.
Duflou
,
J. R.
,
Seliger
,
G.
,
Kara
,
S.
,
Umeda
,
Y.
,
Ometto
,
A.
, and
Willems
,
B.
,
2008
, “
Efficiency and Feasibility of Product Disassembly: A Case-Based Study
,”
CIRP Ann.
,
57
(
2
), pp.
583
600
.
35.
Vanegas
,
P.
,
Peeters
,
J. R.
,
Cattrysse
,
D.
,
Tecchio
,
P.
,
Ardente
,
F.
,
Mathieux
,
F.
,
Dewulf
,
W.
, and
Duflou
,
J. R.
,
2018
, “
Ease of Disassembly of Products to Support Circular Economy Strategies
,”
Resour. Conserv. Recycl.
,
135
, pp.
323
334
.
36.
Mandolini
,
M.
,
Favi
,
C.
,
Germani
,
M.
, and
Marconi
,
M.
,
2018
, “
Time-Based Disassembly Method: How to Assess the Best Disassembly Sequence and Time of Target Components in Complex Products
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
409
430
.
37.
Manning
,
M.
,
Johnson
,
S. D.
,
Tilley
,
N.
,
Wong
,
G. T. W.
, and
Vorsina
,
M.
,
2016
, “Cost-Benefit Analysis (CBA),”
Economic Analysis and Efficiency in Policing, Criminal Justice and Crime Reduction: What Works?
,
Palgrave Macmillan
,
London
.
38.
Shatnawi
,
R.
,
2017
, “
The Application of ROC Analysis in Threshold Identification, Data Imbalance and Metrics Selection for Software Fault Prediction
,”
Innov. Syst. Softw. Eng.
,
13
(
2–3
), pp.
201
217
.
39.
European Commission
,
R.-A.
,
2015
, “
The Durability of Products
,” Final Report, .
40.
Consumer Reports
,
2019
, “
Most Common Appliance Problems and Repairs
,” https://www.consumerreports.org/appliances/most-common-appliance-problems-and-repairs/
41.
ISO 14006:2011—Environmental Management Systems—Guidelines for Incorporating Eco-design.
You do not currently have access to this content.