Abstract

The structural compliance of annular ring gear can significantly influence the quasi-static and dynamic performance of an epicyclic gear set. As powertrain components are continually being optimized to their design limits, this influence becomes prominent and can no longer be ignored. The current paper will study the impact of ring gear compliance on the dynamic response of epicyclic gear sets in fixed ring kinematic configuration. To achieve this objective, the current study will incorporate a finite element–based ring gear formulation into the three-dimensional planetary load distribution model of Ryali and Talbot (2021, “A Dynamic Load Distribution Model of Planetary Gear Sets,” Mech. Mach. Theory, 158, p. 104229). The proposed model employs a modified simplex algorithm to iteratively solve for the elastic gear mesh contacts in conjunction with a numerical integration scheme, which enables it to inherently capture the influence of several components and system-level design variations. The developed formulation is used to conduct parametric studies involving different planetary gear designs, ring gear fixtures (bolted vs. splined), and operating conditions (quasi-static, dynamic). In the case of a splined ring gear fixture, an external splined tooth contact model is developed, which will be used to validate the model against the quasi-static experiments of Kahraman et al. (2010, “Influence of Ring Gear Rim Thickness on Planetary Gear Set Behavior,” ASME J. Mech. Des., 132(2), pp. 0210021–0210028). The discussed results demonstrate the fidelity of the developed model, thus making it an excellent tool for the design and analysis of planetary gears with thin annular ring gears.

References

1.
Ryali
,
L.
, and
Talbot
,
D.
,
2021
, “
A Dynamic Load Distribution Model of Planetary Gear Sets
,”
Mech. Mach. Theory
,
158
, p.
104229
.
2.
Kahraman
,
A.
,
Ligata
,
H.
, and
Singh
,
A.
,
2010
, “
Influence of Ring Gear Rim Thickness on Planetary Gear Set Behavior
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021002
.
3.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2008
, “
An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041701
.
4.
Singh
,
A.
,
Kahraman
,
A.
, and
Ligata
,
H.
,
2008
, “
Internal Gear Strains and Load Sharing in Planetary Transmissions: Model and Experiments
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072602
.
5.
Dai
,
H.
,
Long
,
X.
,
Chen
,
F.
, and
Bian
,
J.
,
2021
, “
Experimental Investigation of the Ring-Planet Gear Meshing Forces Identification
,”
J. Sound Vib.
,
493
, p.
115844
.
6.
Hidaka
,
T.
,
Terauchi
,
Y.
, and
Nagamura
,
K.
,
1979
, “
Dynamic Behavior of Planetary Gear: 7th Report, Influence of the Thickness of the Ring Gear
,”
Bull. JSME
,
22
(
170
), pp.
1142
1149
.
7.
Hidaka
,
T.
,
Ishida
,
T.
, and
Uchida
,
F.
,
1984
, “
Effects of Rim Thickness and Number of Teet on Bending Strength of Internal Gear
,”
Bull. JSME
,
27
(
223
), pp.
110
116
.
8.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1997
, “
Effect of Rim Thickness on Gear Crack Propagation Path
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
88
95
.
9.
Abousleiman
,
V.
, and
Velex
,
P.
,
2006
, “
A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,”
Mech. Mach. Theory
,
41
(
6
), pp.
725
748
.
10.
Kahraman
,
A.
,
Kharazi
,
A. A.
, and
Umrani
,
M.
,
2003
, “
A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims
,”
J. Sound Vib.
,
262
(
3
), pp.
752
768
.
11.
Oda
,
S.
, and
Miyachika
,
K.
,
1987
, “
Root Stress of Thin-Rimmed Internal Spur Gear Supported With Pins : Vibration, Control Engineering, Engineering for Industry
,”
JSME Int. J.
,
30
(
262
), pp.
646
652
.
12.
Oda
,
S.
,
Miyachika
,
K.
, and
Araki
,
K.
,
1984
, “
Effects of Rim Thickness on Root Stress and Bending Fatigue Strength of Internal Gear Tooth
,”
Bull. JSME
,
27
(
230
), pp.
1759
1764
.
13.
Parker
,
R. G.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
(
11
), pp.
2265
2275
.
14.
Parker
,
R. G.
, and
Wu
,
X.
,
2012
, “
Parametric Instability of Planetary Gears Having Elastic Continuum Ring Gears
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041011
.
15.
Wang
,
C.
, and
Parker
,
R. G.
,
2021
, “
Modal Properties and Parametrically Excited Vibrations of Spinning Epicyclic/Planetary Gears With a Deformable Ring
,”
J. Sound Vib.
,
494
, p.
115828
.
16.
Wu
,
X.
, and
Parker
,
R. G.
,
2006
, “
Vibration of Rings on a General Elastic Foundation
,”
J. Sound Vib.
,
295
(
1
), pp.
194
213
.
17.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031014
. .
18.
Hidaka
,
T.
,
Terauchi
,
Y.
,
Nohara
,
M.
, and
Oshita
,
J.
,
1977
, “
Dynamic Behavior of Planetary Gear: 3rd Report, Displacement of Ring Gear in Direction of Line of Action
,”
Bull. JSME
,
20
(
150
), pp.
1663
1672
.
19.
Abousleiman
,
V.
,
Velex
,
P.
, and
Becquerelle
,
S.
,
2007
, “
Modeling of Spur and Helical Gear Planetary Drives With Flexible Ring Gears and Planet Carriers
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
95
106
.
20.
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2001
, “
Effect of Internal Gear Flexibility on the Quasi-Static Behavior of a Planetary Gear Set
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
408
415
.
21.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.
22.
Chapron
,
M.
,
Velex
,
P.
,
Bruyère
,
J.
, and
Becquerelle
,
S.
,
2015
, “
Optimization of Profile Modifications With Regard to Dynamic Tooth Loads in Single and Double-Helical Planetary Gears With Flexible Ring-Gears
,”
ASME J. Mech. Des.
,
138
(
2
), p.
023301
.
23.
Chen
,
Z.
, and
Shao
,
Y.
,
2013
, “
Mesh Stiffness of an Internal Spur Gear Pair With Ring Gear Rim Deformation
,”
Mech. Mach. Theory
,
69
, pp.
1
12
.
24.
Chen
,
Z.
,
Shao
,
Y.
, and
Su
,
D.
,
2013
, “
Dynamic Simulation of Planetary Gear Set With Flexible Spur Ring Gear
,”
J. Sound Vib.
,
332
(
26
), pp.
7191
7204
.
25.
Chen
,
Z.
,
Zhu
,
Z.
, and
Shao
,
Y.
,
2015
, “
Fault Feature Analysis of Planetary Gear System With Tooth Root Crack and Flexible Ring Gear Rim
,”
Eng. Fail. Anal.
,
49
, pp.
92
103
.
26.
Hu
,
Y.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2019
, “
A Gear Load Distribution Model for a Planetary Gear Set With a Flexible Ring Gear Having External Splines
,”
ASME J. Mech. Des.
,
141
(
5
), p.
053301
.
27.
Ge
,
N.
, and
Zhang
,
J.
,
2008
, “
Finite Element Analysis of Internal Gear in High-Speed Planetary Gear Units
,”
Trans. Tianjin Univ.
,
14
(
1
), pp.
11
15
.
28.
Hu
,
S.
, and
Fang
,
Z.
,
2019
, “
The Analysis and Modeling of the Synthetical Meshing Stiffness of Inner Gearing Considering the Flexible Inner Ring Gear
,”
Shock Vib.
,
2019
, p.
2324546
.
29.
Wan
,
B.
,
Zhou
,
X.
,
Fu
,
Y.
,
Yang
,
X.
, and
Duan
,
R.
,
2022
, “
Distinctive Behaviors of Mesh Force and Transmission Error in Mesh Stiffness Model of Spur Planetary Gear System Considering Elastic Ring Gear
,”
Adv. Mech. Eng.
,
14
(
9
), p.
16878132221123468
.
30.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Dynamic Modeling and Analysis of a Spur Planetary Gear Involving Tooth Wedging and Bearing Clearance Nonlinearity
,”
Eur. J. Mec. A/Solids
,
29
(
6
), pp.
1022
1033
.
31.
Cao
,
Z.
, and
Rao
,
M.
,
2021
, “
Coupling Effects of Manufacturing Error and Flexible Ring Gear Rim on Dynamic Features of Planetary Gear
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
21
), pp.
5234
5246
.
32.
Wan
,
B.
, and
Zhou
,
X.
,
2023
, “
A Novel Energy-Based Numerical Method for Solving Planet Load Sharing Model Considering Elastic Ring Gear
,”
J. Mech. Sci. Technol.
,
37
(
7
), pp.
3643
3656
.
33.
Fan
,
Z.
,
Zhu
,
C.
, and
Song
,
C.
,
2020
, “
Dynamic Analysis of Planetary Gear Transmission System Considering the Flexibility of Internal Ring Gear
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
44
(
3
), pp.
695
706
.
34.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2009
, “
A Closed-Form Planet Load Sharing Formulation for Planetary Gear Sets Using a Translational Analogy
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021007
.
35.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Methods Eng.
,
31
(
3
), pp.
525
545
.
36.
Liu
,
J.
,
Pang
,
R.
,
Ding
,
S.
, and
Li
,
X.
,
2020
, “
Vibration Analysis of a Planetary Gear With the Flexible Ring and Planet Bearing Fault
,”
Measurement
,
165
, p.
108100
.
37.
Hu
,
Y.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2018
, “
A Load Distribution Model for Planetary Gear Sets
,”
ASME J. Mech. Des.
,
140
(
5
), p.
53302
.
38.
Sabir
,
A. B.
, and
Ashwell
,
D. G.
,
1971
, “
A Comparison of Curved Beam Finite Elements When Used in Vibration Problems
,”
J. Sound Vib.
,
18
(
4
), pp.
555
563
.
39.
Sabir
,
A. B.
,
Djoudi
,
M. S.
, and
Sfendji
,
A.
,
1994
, “
The Effect of Shear Deformation on Vibration of Circular Arches by Finite Elements Method
,”
Thin-Walled Struct.
,
18
(
1
), pp.
47
63
.
40.
Ryali
,
L.
, and
Talbot
,
D.
,
2023
, “
A Contact Load Distribution Model to Capture the Influence of Structurally Compliant Rotating Ring Gear on the Dynamic Response of Epicyclic Gear Sets
,”
ASME J. Vib. Acoust.
,
145
(
4
), p.
041005
.
41.
Conry
,
T. F.
, and
Seireg
,
A.
,
1971
, “
A Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
387
392
.
42.
Ryali
,
L.
,
Verma
,
A.
,
Hong
,
I.
,
Talbot
,
D.
, and
Zhu
,
F.
,
2021
, “
Experimental and Theoretical Investigation of Quasi-Static System Level Behavior of Planetary Gear Sets
,”
ASME J. Mech. Des.
,
143
(
10
), p.
103401
.
43.
Ryali
,
L.
, and
Talbot
,
D.
,
2023
, “
A Dynamic Gear Load Distribution Model for Epicyclic Gear Sets With a Structurally Compliant Planet Carrier
,”
Mech. Mach. Theory
,
181
, p.
105225
.
44.
Cornell
,
R. W.
,
1981
, “
Compliance and Stress Sensitivity of Spur Gear Teeth
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
447
459
.
45.
Ligata
,
H.
,
2007
,
Impact of System-Level Factors on Planetary Gear Set Behavior
,
The Ohio State University
.
46.
Houser
,
D. R.
, and
Harianto
,
J.
,
2005
, “
Profile Relief and Noise Excitation in Helical Gears
,”
Gear Sol.
, (
Mar.
), pp.
32
39
. https://gearsolutions.com/features/profile-relief-and-noise-excitation-in-helicalgears/
47.
Houser
,
D. R.
,
Harianto
,
J.
, and
Ueda
,
Y.
,
2004
, “
Determining the Source of Gear Whine Noise
,”
Gear Sol.
, (
Feb.
), pp.
16
22
. https://gearsolutions.com/features/determining-the-source-of-gear-whine-noise/
48.
Houser
,
D.
, and
Harianto
,
J.
,
2008
, “
Microgeometry and Bias in Helical Gear Noise Excitations
,”
Gear Sol.
, (
Feb.
, pp.
21
39
. https://gearsolutions.com/features/microgeometry-and-bias-inhelical-gear-noise-excitations/
You do not currently have access to this content.