Abstract

The parallel mechanisms (PMs) with configurable platforms have the advantages of flexibility, high speed, and extra operability over PMs with common platforms. This paper proposes a systematic approach for synthesizing three-degrees-of-freedom (3-DOF) translational parallel mechanisms with configurable platforms of one translation DOF (TPMs-T) based on the finite screw. The motion relationship between the configurable platform and limbs is discussed to achieve the motion requirement of the TPMs-T limbs. The equivalence principle of kinematic joints is further pinpointed, and a series of lower mobility limbs have been developed. At last, the geometric relationship of assembly conditions is derived which can contribute to quickly solving the intersection of limb motions, a series of TPMs-T are constructed to verify the assembly conditions, and the fully controlled condition is discussed.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
FToMM
,
2003
, “
IFToMM Terminology/English 5.1
,”
Mech. Mach. Theory
,
38
(
7–10
), pp.
819
825
.
2.
Gough
,
V. E.
, and
Whitehall
,
S. G.
,
1962
, “
Universal Tyre Test Machine
,”
Proceedings of 9th International Congress FISITA
,
London, UK
,
Apr. 30–May 5
, pp.
117
137
.
3.
Ye
,
W.
, and
Li
,
Q.
,
2019
, “
Type Synthesis of Lower Mobility Parallel Mechanisms: A Review
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
38
.
4.
Liu
,
X.-J.
,
Wang
,
J.
,
Oh
,
K.-K.
, and
Kim
,
J.
,
2004
, “
A New Approach to the Design of a DELTA Robot With a Desired Workspace
,”
J. Intell. Rob. Syst.
,
39
(
2
), pp.
209
225
.
5.
Zhao
,
Y.
,
2013
, “
Dynamic Optimum Design of a Three Translational Degrees of Freedom Parallel Robot While Considering Anisotropic Property
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
100
112
.
6.
Yi
,
B. J.
,
Na
,
H. Y.
,
Lee
,
J. H.
,
Hong
,
Y. S.
,
Oh
,
S. R.
,
Suh
,
I. H.
, and
Kim
,
W. K.
,
2002
, “
Design of a Parallel-Type Gripper Mechanism
,”
Int. J. Robot. Res.
,
21
(
7
), pp.
661
676
.
7.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
277
287
.
8.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
“Parallel Robots With Configurable Platforms: Fundamental Aspects of a New Class of Robotic Architectures
,”
roc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
3
), pp.
463
472
.
9.
Lambert
,
P.
, and
Herder
,
J. L.
,
2019
, “
A 7-DOF Redundantly Actuated Parallel Haptic Device Combining 6-DOF Manipulation and 1-DOF Grasping
,”
Mech. Mach. Theory
,
134
, pp.
349
364
.
10.
Wen
,
K.
, and
Gosselin
,
C.
,
2019
, “
Kinematically Redundant Hybrid Robots With Simple Singularity Conditions and Analytical Inverse Kinematic Solutions
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3828
3835
.
11.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberte
,
T.
, and
Gosselin
,
C.
,
2021
, “
A Backdrivable Kinematically Redundant (6 + 3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–Robot Interaction
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1222
1238
.
12.
Jin
,
X.
,
Fang
,
Y.
, and
Zhang
,
D.
,
2019
, “
Design of a Class of Generalized Parallel Mechanisms With Large Rotational Angles and Integrated End-Effectors
,”
Mech. Mach. Theory
,
134
, pp.
117
134
.
13.
Tian
,
C.
, and
Zhang
,
D.
,
2020
, “
A New Family of Generalized Parallel Manipulators With Configurable Moving Platforms
,”
Mech. Mach. Theory
,
153
, p.
103997
.
14.
Tian
,
C.
,
Zhang
,
D.
,
Tang
,
H.
, and
Wu
,
C.
,
2021
, “
Structure Synthesis of Reconfigurable Generalized Parallel Mechanisms With Configurable Platforms
,”
Mech. Mach. Theory
,
160
, p.
104281
.
15.
Tian
,
C.
, and
Zhang
,
D.
,
2021
, “
Design and Analysis of Novel Kinematically Redundant Reconfigurable Generalized Parallel Manipulators
,”
Mech. Mach. Theory
,
166
, p.
104481
.
16.
Liu
,
J.
,
Zhang
,
D.
,
Chen
,
Y.
,
Xia
,
Z.
, and
Wu
,
C.
,
2022
, “
Design of a Class of Generalized Parallel Mechanisms for Adaptive Landing and Aerial Manipulation
,”
Mech. Mach. Theory
,
170
, p.
104692
.
17.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
145
.
18.
Huang
,
Z.
,
2002
, “
Type Synthesis Principle of Minor-Mobility Parallel Manipulators
,”
Sci. China Ser. E
,
45
(
3
), p.
241
.
19.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2005
, “
Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory and the Concept of Virtual Chain
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1113
1121
.
20.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
799
810
.
21.
Guo
,
S.
,
Fang
,
Y.
, and
Qu
,
H.
,
2012
, “
Type Synthesis of 4-DOF Nonoverconstrained Parallel Mechanisms Based on Screw Theory
,”
Robotica
,
30
(
1
), pp.
31
37
.
22.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
83
92
.
23.
Hervé
,
J.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
24.
Li
,
Q.
,
Huang
,
Z.
, and
Herve
,
J. M.
,
2004
, “
Type Synthesis of 3R2T 5-DOF Parallel Mechanisms Using the Lie Group of Displacements
,”
IEEE Trans. Robot. Automat.
,
20
(
2
), pp.
173
180
.
25.
Li
,
Q.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Robot.
,
26
(
3
), pp.
401
410
.
26.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
27.
Gao
,
F.
,
Yang
,
J.
, and
Ge
,
Q. J.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.
28.
He
,
J.
,
Gao
,
F.
,
Meng
,
X.
, and
Guo
,
W.
,
2015
, “
Type Synthesis for 4-DOF Parallel Press Mechanism Using GF Set Theory
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
851
859
.
29.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
30.
Sun
,
T.
,
Yang
,
S.
,
Huang
,
T.
, and
Dai
,
J. S.
,
2017
, “
A Way of Relating Instantaneous and Finite Screws Based on the Screw Triangle Product
,”
Mech. Mach. Theory
,
108
, pp.
75
82
.
31.
Yang
,
S.
,
Sun
,
T.
,
Huang
,
T.
,
Li
,
Q.
, and
Gu
,
D.
,
2016
, “
A Finite Screw Approach to Type Synthesis of Three-DOF Translational Parallel Mechanisms
,”
Mech. Mach. Theory
,
104
, pp.
405
419
.
32.
Yang
,
S.
,
Sun
,
T.
, and
Huang
,
T.
,
2017
, “
Type Synthesis of Parallel Mechanisms Having 3T1R Motion With Variable Rotational Axis
,”
Mech. Mach. Theory
,
109
, pp.
220
230
.
33.
Hervé
,
J. M.
, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
34.
Li
,
Q.
,
2004
, “
Displacement Manifold Method for Type Synthesis of Lower-Mobility Parallel Mechanisms
,”
Sci. China Ser. E
,
47
(
6
), p.
641
.
35.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles’ Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
.
36.
Jin
,
Q.
, and
Yang
,
T-L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
625
639
.
You do not currently have access to this content.