Graphical Abstract Figure

Executing a door-latch design synthesis task using CoDe SyMM tool

Graphical Abstract Figure

Executing a door-latch design synthesis task using CoDe SyMM tool

Close modal

Abstract

A multistate mechanical device (MSMD) can achieve different functions at different operating states by changing its topological structure and the interaction among its elements. To facilitate conceptual design synthesis of MSMDs, this article reports the development of a prescriptive model based on past empirical studies, implementing it into a web-based software tool, and evaluating its usefulness through design experiments. The objectives include elaborating on an MSMD synthesis task representation scheme, proposing a method for storing and retrieving kinematic building blocks to support initial solution proposals, and introducing modification rules for refining semiworking initial solutions. The prescriptive model guides designers step by step, facilitating the search through a database of building blocks and modification rules. The resulting web-based tool automates this process and allows users to contribute to the database. An MSMD synthesis task example is provided to demonstrate the execution of the prescriptive synthesis process. Finally, an initial evaluation of the tool's usefulness is carried out with the help of design experiments involving external designers. The results obtained from the evaluation study are reported.

References

1.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
1994
, “
An Approach to Functional Synthesis of Solutions in Mechanical Conceptual Design. Part I: Introduction and Knowledge Representation
,”
Res. Eng. Des.
,
6
(
3
), pp.
127
141
.
2.
Berliner
,
C.
, and
Brimson
,
J.
,
1988
,
Cost Management for Today’s Advanced Manufacturing: The CAM-I Conceptual Design
,
Harvard Business School Press
,
Boston, MA
.
3.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
1996
, “
An Approach to Functional Synthesis of Mechanical Design Concepts: Theory, Applications, and Emerging Research Issues
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
313
331
.
4.
Liu
,
Y.-C.
,
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
2003
, “
Towards an ‘Ideal’ Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.
5.
Tsai
,
L.-W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
6.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
7.
Li
,
C.-L.
,
1998
, “
Conceptual Design of Single and Multiple State Mechanical Devices: An Intelligent CAD Approach
,”
HKU Thesis Online (HKUTO)
.
8.
Majumder
,
A.
, and
Chakrabarti
,
A.
,
2022
, “
A Causal Representation Scheme for Capturing Topological Changes in Multi-State Mechanical Devices
,”
Select Proceedings of IPRoMM 2022
,
IIT Dhanbad, India
,
Dec. 22–23
,
Springer Nature, pp. 3–12
.
9.
Todeti
,
S. R.
,
2015
, “
Understanding and Supporting Conceptual Design Synthesis Of Multiple State Mechanical Devices
,”
Ph.D. thesis
,
Indian Institute of Science
,
Bangalore, India
.
10.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Representations and Identifications of Structural and Motion State Characteristics of Mechanisms With Variable Topologies
,”
Trans. Can. Soc. Mech. Eng.
,
30
(
1
), pp.
19
40
.
11.
Liu
,
C.
,
Hildre
,
H. P.
,
Zhang
,
H.
, and
Rølvåg
,
T.
,
2015
, “
Conceptual Design of Multi-Modal Products
,”
Res. Eng. Des.
,
26
(
3
), pp.
219
234
.
12.
Zhang
,
W. X.
,
Ding
,
X. L.
, and
Dai
,
J. S.
,
2011
, “
Morphological Synthesis of Metamorphic Mechanisms Based on Constraint Variation
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
225
(
12
), pp.
2997
3010
.
13.
Zhang
,
L.
,
Wang
,
D.
, and
Dai
,
J. S.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME. J. Mech. Des
,
130
(
7
), pp.
072303
.
14.
Roozenburg
,
N. F. M.
,
2002
, “Defining Synthesis: On the Senses and the Logic of Design Synthesis,”
Engineering Design Synthesis: Understanding, Approaches and Tools
,
A.
Chakrabarti
, ed.,
Springer
,
New York
, pp.
3
18
.
15.
Olson
,
D. G.
,
Erdman
,
A. G.
, and
Riley
,
D. R.
,
1985
, “
A Systematic Procedure for Type Synthesis of Mechanisms With Literature Review Literaturbe-Sprechung
,”
Mech. Mach. Theory
,
20
(
4
), pp.
285
295
.
16.
Yannou
,
B.
, and
Vasiliu
,
A.
,
1995
, “
Design Platform for Planar Mechanisms Based on a Qualitative Kinematics
,”
In Proceedings of the 9th International Workshop on Qualitative Reasoning
,
Amsterdam, The Netherlands
,
May 16–19
, pp.
191
200
.
17.
Subramanian
,
D.
, and
Wang
,
C.-S.
,
1995
, “
Kinematic Synthesis With Configuration Spaces
,”
Res. Eng. Des.
,
7
(
3
), pp.
193
213
.
18.
Ulrich
,
K. T.
,
1988
,
Computation and Pre-Parametric Design
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
19.
Sacks
,
E.
, and
Joskowicz
,
L.
,
2010
,
The Configuration Space Method for Kinematic Design of Mechanisms
,
MIT Press
,
Cambridge, MA
.
20.
Hampali
,
S.
,
Chittawadigi
,
R. G.
, and
Saha
,
S. K.
,
2015
, “
MechAnalyzer: 3D Model Based Mechanism Learning Software
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
425
431
.
21.
Majumder
,
A.
,
Todeti
,
S. R.
, and
Chakrabarti
,
A.
,
2023
, “
Empirical Studies on Conceptual Design Synthesis of Multiple-State Mechanical Devices
,”
Res. Eng. Des.
,
34
(
4
), pp.
477
495
.
22.
Baron
,
J.
,
2004
, “Normative Models of Judgment and Decision Making,”
Blackwell Handbook of Judgment and Decision Making
,
D. J.
Koehler
, and
N.
Harvey
, eds.,
Blackwell Publishing
,
Oxford, UK
, pp.
19
36
.
23.
Wynn
,
D.
, and
Clarkson
,
J.
,
2005
,
Models of Designing
,
Springer London
,
London
, pp.
34
59
.
24.
Vermaas
,
P. E.
, and
Dorst
,
C. K.
,
2007
, “
On the Conceptual Framework of John Gero's FBS-Model and the Prescriptive Aims of Design Methodology
,”
Des. Stud.
,
28
(
2
), pp.
133
157
.
25.
Murakami
,
T.
, and
Nakajima
,
N.
,
1997
, “
Mechanism Concept Retrieval Using Configuration Space
,”
Res. Eng. Des.
,
9
(
2
), pp.
99
111
.
26.
Artobolevsky
,
I.
,
1976
,
Mechanisms in Modern Engineering Design: A Handbook for Engineers, Designers and Inventors
,
MIR Publishers
,
Moscow, Russia
.
27.
Joskowicz
,
L.
, and
Addanki
,
S.
,
1988
, “
From Kinematics to Shape: An Approach to Innovative Design
,”
In Proceedings of the 7th National Conference on Artificial Intelligence, AAAI 1988
,
Minneapolis, MN
,
Aug. 21–26
, pp.
347
352
.
28.
Mittal
,
S.
,
Dym
,
C. L.
, and
Morjaria
,
M.
,
1986
, “
PRIDE: An Expert System for the Design of Paper Handling Systems
,”
Computer
,
19
(
7
), pp.
102
114
.
29.
Brown
,
D. C.
, and
Chandrasekaran
,
B.
,
1986
, “
Knowledge and Control for a Mechanical Design Expert System
,”
Computer
,
19
(
7
), pp.
92
100
.
30.
Rodriguez
,
A.
, and
Mason
,
M. T.
,
2013
, “
Effector Form Design for 1DOF Planar Actuation
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
349
356
.
31.
Burgess
,
S. C.
,
2012
, “
A Backwards Design Method for Mechanical Conceptual Design
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031002
.
32.
Majumder
,
A.
, and
Chakrabarti
,
A.
,
2023
, “
Development of a Design Support Tool for Synthesising Multi-State Mechanical Device Concepts
,”
DS 122: Proceedings of the Design Society: 24th International Conference on Engineering Design (ICED23)
,
Bordeaux, France
,
July 24–28
, pp.
1455
1464
.
33.
Balakrishnan
,
R.
, and
Ranganathan
,
K.
,
2012
,
A Textbook of Graph Theory
,
Springer
,
New York
.
34.
Chiou
,
S.-J.
, and
Sridhar
,
K.
,
1999
, “
Automated Conceptual Design of Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
467
495
.
35.
Yang
,
Q.
,
Hao
,
G.
,
Li
,
S.
,
Wang
,
H.
, and
Li
,
H.
,
2020
, “
Practical Structural Design Approach of Multiconfiguration Planar Single-Loop Metamorphic Mechanism With a Single Actuator
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
15
.
36.
Li
,
S.
,
Wang
,
H.
,
Meng
,
Q.
, and
Dai
,
J. S.
,
2016
, “
Task-Based Structure Synthesis of Source Metamorphic Mechanisms and Constrained Forms of Metamorphic Joints
,”
Mech. Mach. Theory
,
96
(
2
), pp.
334
345
.
37.
Li
,
S.
, and
Dai
,
J. S.
,
2012
, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031004
.
38.
Haibo
,
T.
,
Ma
,
H. W.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
(
1
), pp.
27
39
.
39.
Liu
,
F.
,
Zhang
,
W.
,
Xu
,
K.
,
Deng
,
H.
, and
Ding
,
X.
,
2018
, “
A Planar Mechanism With Variable Topology for Automated Fiber Placement
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
40.
Shah
,
J. J.
,
Millsap
,
R. E.
,
Woodward
,
J.
, and
Smith
,
S. M.
,
2012
, “
Applied Tests of Design Skills—Part 1: Divergent Thinking
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021005
.
You do not currently have access to this content.