Abstract

Online reviews provide a source to identify customer needs. While many studies have analyzed online reviews during the pandemic, it is worth noting that many customer preference studies in this period were not conducted within a product design context. The societal challenges presented by the prolonged COVID-19 pandemic, spanning nearly three years, have significantly impacted all facets of the population in a manner unparalleled in recent decades. Therefore, this research delves into the post-COVID-19 landscape, examining shifts in consumer preferences for diverse product features through an analysis of online reviews. Our framework unfolds in five stages: First, it collects online reviews and second, delves into customer interest in product features. Third, it analyzes customer sentiments toward these features. Fourth, employing interpretable machine learning techniques, it determines the significance of each feature. Fifth, an importance-performance analysis (IPA) and Kano models are utilized to formulate and analyze product strategies. The developed method is assessed on two real-world datasets—smartphone and laptop reviews. The results reveal that after the pandemic, customer satisfaction for the screen and camera in smartphones decreased, whereas it increased for those in laptops. In addition, the importance of battery features in smartphones and laptops has increased. These insights will aid companies in promptly formulating strategies to navigate dynamic market environments.

References

1.
Yousaf
,
S.
, and
Kim
,
J. M.
,
2023
, “
Did COVID-19 Change Preferences for Hygiene-Related Service Attributes as Satisfiers and Dissatisfiers? An Analysis of Textual Content of Online Hotel Reviews
,”
J. Hospitality Tourism Manage.
,
56
, pp.
264
271
.
2.
Kim
,
J. M.
,
Liu
,
J.
, and
Park
,
K. K.-C.
,
2023
, “
The Dynamics in Asymmetric Effects of Multi-attributes on Customer Satisfaction: Evidence From COVID-19
,”
Int. J. Contemp. Hospitality Manage.
,
35
(
10
), pp.
3497
3517
.
3.
Sakapurnama
,
E.
,
2023
, “
A Study on Pandemic COVID-19 on Indonesia’s Consumer Preferences: Input for Business and Government Policies in Indonesia
,”
Adv. Econ. Bus.
,
11
(
1
), pp.
9
17
.
4.
Sarkis
,
J.
,
Cohen
,
M. J.
,
Dewick
,
P.
, and
Schröder
,
P.
,
2020
, “
A Brave New World: Lessons From the COVID-19 Pandemic for Transitioning to Sustainable Supply and Production
,”
Resour. Conserv. Recycling
,
159
, p.
104894
.
5.
Aslam
,
F.
,
Awan
,
T. M.
,
Syed
,
J. H.
,
Kashif
,
A.
, and
Parveen
,
M.
,
2020
, “
Sentiments and Emotions Evoked by News Headlines of Coronavirus Disease (COVID-19) Outbreak
,”
Humanit. Soc. Sci. Commun.
,
7
(
1
), pp.
1
9
.
6.
Ye
,
S.
,
Lei
,
S. I.
,
Zhao
,
X.
,
Zhu
,
L.
, and
Law
,
R.
,
2023
, “
Modeling Tourists’ Preference Between Hotels and Peer-to-Peer (P2P) Sharing Accommodation: a Pre- and Post-COVID-19 Comparison
,”
Int. J. Contemp. Hospitality Manage.
,
35
(
4
), pp.
1423
1447
.
7.
Oestreich
,
L.
,
Rhoden
,
P. S.
,
da Silva Vieira
,
J.
, and
Ruiz-Padillo
,
A.
,
2023
, “
Impacts of the COVID-19 Pandemic on the Profile and Preferences of Urban Mobility in Brazil: Challenges and Opportunities
,”
Travel Behav. Soc.
,
31
, pp.
312
322
.
8.
Hardt
,
D.
, and
Glückstad
,
F. K.
,
2024
, “
A Social Media Analysis of Travel Preferences and Attitudes, Before and During Covid-19
,”
Tourism Manage.
,
100
, p.
104821
.
9.
Osofsky
,
J. D.
,
Osofsky
,
H. J.
, and
Mamon
,
L. Y.
,
2020
, “
Psychological and Social Impact of COVID-19
,”
Psychol. Trauma: Theory Res. Pract. Policy
,
12
(
5
), pp.
468
469
.
10.
Dunn
,
A.
,
Hood
,
K.
, and
Driessen
,
A.
,
2020
, “Measuring the Effects of the COVID-19 Pandemic on Consumer Spending Using Card Transaction Data,” US Department of Commerce, Bureau of Economic Analysis.
11.
Kim
,
J.
,
Park
,
S.
, and
Kim
,
H. M.
,
2022
, “
Analysis of Dynamic Changes in Customer Sentiment on Product Features After the Outbreak of COVID-19 Based on Online Reviews
,”
ASME J. Mech. Des.
,
144
(
2
), p.
024501
.
12.
Song
,
Y.
,
Liu
,
K.
,
Guo
,
L.
,
Yang
,
Z.
, and
Jin
,
M.
,
2022
, “
Does Hotel Customer Satisfaction Change During the COVID-19? A Perspective From Online Reviews
,”
J. Hospitality Tourism Manage.
,
51
, pp.
132
138
.
13.
Chopdar
,
P. K.
,
Paul
,
J.
, and
Prodanova
,
J.
,
2022
, “
Mobile Shoppers’ Response to Covid-19 Phobia, Pessimism and Smartphone Addiction: Does Social Influence Matter?
Technol. Forecast. Soc. Change
,
174
, p.
121249
.
14.
Kulshreshtha
,
K.
, and
Sharma
,
G.
,
2022
, “
From Restaurant to Cloud Kitchen: Survival of the Fittest During COVID-19 An Empirical Examination
,”
Technol. Forecast. Soc. Change
,
179
, p.
121629
.
15.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
,
Decision-Based Design: Integrating Consumer Preferences Into Engineering Design
,
Springer
,
London
.
16.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
17.
Hou
,
T.
,
Yannou
,
B.
,
Leroy
,
Y.
, and
Poirson
,
E.
,
2019
, “
Mining Changes in User Expectation Over Time From Online Reviews
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091102
.
18.
Wang
,
W.
,
Li
,
Z.
,
Tian
,
Z.
,
Wang
,
J.
, and
Cheng
,
M.
,
2018
, “
Extracting and Summarizing Affective Features and Responses From Online Product Descriptions and Reviews: A Kansei Text Mining Approach
,”
Eng. Appl. Artif. Intell.
,
73
, pp.
149
162
.
19.
Singh
,
A.
, and
Tucker
,
C. S.
,
2017
, “
A Machine Learning Approach to Product Review Disambiguation Based on Function, Form and Behavior Classification
,”
Dec. Support Syst.
,
97
, pp.
81
91
.
20.
Lin
,
K.
, and
Kim
,
H.
,
2021
, “
An Automated Method to Conduct Importance-Performance Analysis of Product Attributes From Online Reviews—An Extension With a Case Study
,”
Proceedings of the International Conference on Engineering Design (ICED21)
,
1
, pp.
417
426
.
21.
Liu
,
Y.
,
Jin
,
J.
,
Ji
,
P.
,
Harding
,
J. A.
, and
Fung
,
R. Y.
,
2013
, “
Identifying Helpful Online Reviews: A Product Designer’s Perspective
,”
Comput. Aided Des.
,
45
(
2
), pp.
180
194
(Solid and Physical Modeling 2012).
22.
Zhou
,
F.
,
Jianxin Jiao
,
R.
, and
Linsey
,
J. S.
,
2015
, “
Latent Customer Needs Elicitation by Use Case Analogical Reasoning From Sentiment Analysis of Online Product Reviews
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071401
.
23.
Lim
,
S.
, and
Tucker
,
C. S.
,
2017
, “
Mitigating Online Product Rating Biases Through the Discovery of Optimistic, Pessimistic, and Realistic Reviewers
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111409
.
24.
Kherwa
,
P.
, and
Bansal
,
P.
,
2019
, “
Topic Modeling: A Comprehensive Review
,”
EAI Endorsed Trans. Scalable Inf. Syst.
,
7
(
24
), p.
e2
.
25.
Deerwester
,
S.
,
Dumais
,
S. T.
,
Furnas
,
G. W.
,
Landauer
,
T. K.
, and
Harshman
,
R.
,
1990
, “
Indexing by Latent Semantic Analysis
,”
J. Am. Soc. Inf. Sci.
,
41
(
6
), pp.
391
407
.
26.
Berry
,
M. W.
, and
Martin
,
D. I.
,
2005
,
Principal Component Analysis for Information Retrieval
,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp.
415
430
.
27.
Buckley
,
C.
,
Allan
,
J.
, and
Salton
,
G.
,
1994
, “
Automatic Routing and AD-HOC Retrieval Using SMART: TREC 2
,”
Inform. Proces. Manage.
,
31
(
3
), pp.
45
45
.
28.
Kherwa
,
P.
, and
Bansal
,
P.
,
20172017
, “
Latent Semantic Analysis: An Approach to Understand Semantic of Text
,”
2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC)
,
Mysore, India
,
Sept. 8–9
, IEEE, pp.
870
874
.
29.
Paatero
,
P.
, and
Tapper
,
U.
,
1994
, “
Positive Matrix Factorization: A Non-negative Factor Model With Optimal Utilization of Error Estimates of Data Values
,”
Environmetrics
,
5
(
2
), pp.
111
126
.
30.
Lee
,
D. D.
, and
Seung
,
H. S.
,
1999
, “
Learning the Parts of Objects by Non-negative Matrix Factorization
,”
Nature
,
401
(
6755
), pp.
788
791
.
31.
Hofmann
,
T.
,
2001
, “
Unsupervised Learning by Probabilistic Latent Semantic Analysis
,”
Mach. Learn.
,
42
, pp.
177
196
.
32.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
33.
Zhou
,
F.
,
Ayoub
,
J.
,
Xu
,
Q.
, and
Jessie Yang
,
X.
,
2020
, “
A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011101
.
34.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Approach for Importance–Performance Analysis of Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081705
.
35.
Joung
,
J.
, and
Kim
,
H. M.
,
2021
, “
Automated Keyword Filtering in Latent Dirichlet Allocation for Identifying Product Attributes From Online Reviews
,”
ASME J. Mech. Des.
,
143
(
8
), p.
084501
.
36.
Bongini
,
P.
,
Osborne
,
F.
,
Pedrazzoli
,
A.
, and
Rossolini
,
M.
,
2022
, “
A Topic Modelling Analysis of White Papers in Security Token Offerings: Which Topic Matters for Funding?
Technol. Forecast. Soc. Change
,
184
, p.
122005
.
37.
Yang
,
Z.
,
Wu
,
Q.
,
Venkatachalam
,
K.
,
Li
,
Y.
,
Xu
,
B.
, and
Trojovský
,
P.
,
2022
, “
Topic Identification and Sentiment Trends in Weibo and WeChat Content Related to Intellectual Property in China
,”
Technol. Forecast. Soc. Change
,
184
, p.
121980
.
38.
Wu
,
Z.
,
Duan
,
C.
,
Cui
,
Y.
, and
Qin
,
R.
,
2023
, “
Consumers’ Attitudes Toward Low-Carbon Consumption Based on a Computational Model: Evidence From China
,”
Technol. Forecast. Soc. Change
,
186
, p.
122119
.
39.
Ma
,
T.
,
Zhou
,
X.
,
Liu
,
J.
,
Lou
,
Z.
,
Hua
,
Z.
, and
Wang
,
R.
,
2021
, “
Combining Topic Modeling and SAO Semantic Analysis to Identify Technological Opportunities of Emerging Technologies
,”
Technol. Forecast. Soc. Change
,
173
, p.
121159
.
40.
Zhang
,
H.
,
Daim
,
T.
, and
Zhang
,
Y. P.
,
2021
, “
Integrating Patent Analysis Into Technology Roadmapping: A Latent Dirichlet Allocation Based Technology Assessment and Roadmapping in the Field of Blockchain
,”
Technol. Forecast. Soc. Change
,
167
, p.
120729
.
41.
Yan-Yan
,
Z.
,
Bing
,
Q.
, and
Ting
,
L.
,
2010
, “
Integrating Intra- and Inter-document Evidences for Improving Sentence Sentiment Classification
,”
Acta Autom. Sin.
,
36
(
10
), pp.
1417
1425
.
42.
Hu
,
Y.
, and
Li
,
W.
,
2011
, “
Document Sentiment Classification by Exploring Description Model of Topical Terms
,”
Comput. Speech Lang.
,
25
(
2
), pp.
386
403
.
43.
Kang
,
H.
,
Yoo
,
S. J.
, and
Han
,
D.
,
2012
, “
Senti-lexicon and Improved Naïve Bayes Algorithms for Sentiment Analysis of Restaurant Reviews
,”
Exp. Syst. Appl.
,
39
(
5
), pp.
6000
6010
.
44.
Ptaszynski
,
M.
,
Dokoshi
,
H.
,
Oyama
,
S.
,
Rzepka
,
R.
,
Kurihara
,
M.
,
Araki
,
K.
, and
Momouchi
,
Y.
,
2013
, “
Affect Analysis in Context of Characters in Narratives
,”
Exp. Syst. Appl.
,
40
(
1
), pp.
168
176
.
45.
Hutto
,
C.
, and
Gilbert
,
E.
,
2014
, “
Vader: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text
,”
Proceedings of the International AAAI Conference on Web and Social Media
,
Ann Arbor, MI
,
June 1–4
, Vol. 8, pp.
216
225
.
46.
Zhang
,
L.
,
Ghosh
,
R.
,
Dekhil
,
M.
,
Hsu
,
M.
, and
Liu
,
B.
,
2011
, “
Combining Lexicon-Based and Learning-Based Methods for Twitter Sentiment Analysis
,”
HP Laboratories, Technical Report HPL-2011
, Vol.
89
, pp.
1
8
.
47.
Zagibalov
,
T.
,
2010
,
Unsupervised and Knowledge-Poor Approaches to Sentiment Analysis
,
University of Sussex
,
Brighton, UK
.
48.
Augustyniak
,
Ł.
,
Szymański
,
P.
,
Kajdanowicz
,
T.
, and
Tuligłowicz
,
W.
,
2015
, “
Comprehensive Study on Lexicon-Based Ensemble Classification Sentiment Analysis
,”
Entropy
,
18
(
1
), p.
4
.
49.
Gonçalves
,
P.
,
Araújo
,
M.
,
Benevenuto
,
F.
, and
Cha
,
M.
,
2013
, “
Comparing and Combining Sentiment Analysis Methods
,”
Proceedings of the First ACM Conference on Online Social Networks
,
Boston, MA
,
Oct. 7–8
, pp.
27
38
.
50.
Shi
,
H.-X.
, and
Li
,
X.-J.
,
2011
, “
A Sentiment Analysis Model for Hotel Reviews Based on Supervised Learning
,”
2011 International Conference on Machine Learning and Cybernetics
,
Guilin, China
,
July 10–13
, Vol. 3, IEEE, pp.
950
954
.
51.
Anjaria
,
M.
, and
Guddeti
,
R. M. R.
,
2014
, “
A Novel Sentiment Analysis of Social Networks Using Supervised Learning
,”
Soc. Netw. Anal. Mining
,
4
(
1
), pp.
1
15
.
52.
Vilares
,
D.
,
Alonso
,
M. A.
, and
Gómez-Rodríguez
,
C.
,
2017
, “
Supervised Sentiment Analysis in Multilingual Environments
,”
Inf. Process. Manage.
,
53
(
3
), pp.
595
607
.
53.
Mukhtar
,
N.
,
Khan
,
M. A.
, and
Chiragh
,
N.
,
2018
, “
Lexicon-Based Approach Outperforms Supervised Machine Learning Approach for Urdu Sentiment Analysis in Multiple Domains
,”
Telematics Inform.
,
35
(
8
), pp.
2173
2183
.
54.
Zhang
,
H.
,
Sekhari
,
A.
,
Ouzrout
,
Y.
, and
Bouras
,
A.
,
2016
, “
Jointly Identifying Opinion Mining Elements and Fuzzy Measurement of Opinion Intensity to Analyze Product Features
,”
Eng. Appl. Artif. Intell.
,
47
, pp.
122
139
.
55.
Jiang
,
H.
,
Kwong
,
C. K.
, and
Yung
,
K. L.
,
2017
, “
Predicting Future Importance of Product Features Based on Online Customer Reviews
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111413
.
56.
Bag
,
S.
,
Tiwari
,
M. K.
, and
Chan
,
F. T.
,
2019
, “
Predicting the Consumer’s Purchase Intention of Durable Goods: An Attribute-Level Analysis
,”
J. Bus. Res.
,
94
, pp.
408
419
.
57.
Suryadi
,
D.
, and
Kim
,
H.
,
2018
, “
A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121403
.
58.
Wang
,
Z.
,
Gao
,
P.
, and
Chu
,
X.
,
2022
, “
Sentiment Analysis From Customer-Generated Online Videos on Product Review Using Topic Modeling and Multi-Attention BLSTM
,”
Adv. Eng. Inform.
,
52
, p.
101588
.
59.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
IDETC/CIE 2012
,
Chicago, IL
,
Aug. 12–15
, pp.
533
540
.
60.
Mikulić
,
J.
, and
Prebežac
,
D.
,
2012
, “
Accounting for Dynamics in Attribute-Importance and for Competitor Performance to Enhance Reliability of BPNN-Based Importance–Performance Analysis
,”
Exp. Syst. Appl.
,
39
(
5
), pp.
5144
5153
.
61.
Decker
,
R.
, and
Trusov
,
M.
,
2010
, “
Estimating Aggregate Consumer Preferences From Online Product Reviews
,”
Int. J. Res. Mark.
,
27
(
4
), pp.
293
307
.
62.
Bi
,
J.-W.
,
Liu
,
Y.
,
Fan
,
Z.-P.
, and
Zhang
,
J.
,
2019
, “
Wisdom of Crowds: Conducting Importance-Performance Analysis (IPA) Through Online Reviews
,”
Tourism Manage.
,
70
, pp.
460
478
.
63.
Joung
,
J.
, and
Kim
,
H. M.
,
2022
, “
Explainable Neural Network-Based Approach to Kano Categorisation of Product Features From Online Reviews
,”
Int. J. Prod. Res.
,
60
(
23
), pp.
7053
7073
.
64.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
65.
Labor
,
U.
,
2022
, “
New Release: Bureau of Labor Statistics
,” https://www.bls.gov/news.release/pdf/empsit.pdf
66.
Wang
,
W.
,
Feng
,
Y.
, and
Dai
,
W.
,
2018
, “
Topic Analysis of Online Reviews for Two Competitive Products Using Latent Dirichlet Allocation
,”
Electr. Commerce Res. Appl.
,
29
, pp.
142
156
.
67.
Guo
,
H.
,
Zhu
,
H.
,
Guo
,
Z.
,
Zhang
,
X.
, and
Su
,
Z.
,
2009
, “
Product Feature Categorization With Multilevel Latent Semantic Association
,”
Proceedings of the 18th ACM Conference on Information and Knowledge Management
,
Hong Kong
,
Nov. 2–6
, pp.
1087
1096
.
68.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining Opinion Features in Customer Reviews
,”
AAAI
,
San Jose, CA
,
July 25–29
, Vol. 4, pp.
755
760
.
69.
Mikolov
,
T.
,
Sutskever
,
I.
,
Chen
,
K.
,
Corrado
,
G. S.
, and
Dean
,
J.
,
2013
, “
Distributed Representations of Words and Phrases and Their Compositionality
,”
Advances in Neural Information Processing Systems
,
Lake Tahoe, CA
,
Dec. 5–8
.
70.
Martilla
,
J. A.
, and
James
,
J. C.
,
1977
, “
Importance-Performance Analysis
,”
J. Mark.
,
41
(
1
), pp.
77
79
.
71.
Kano
,
N.
,
Seraku
,
N.
, and
Takahashi
,
F.
,
1984
, “
Attractive Quality and Must-Be Quality
,”
J. Jpn. Soc. Qual. Control
,
14
(
2
), pp.
147
156
.
72.
Kundu
,
K.
,
2020
, “
COVID-19 Impact: Global Smartphone Sales Declined 20% in Q1
,” https://beebom.com/smartphone-sales-decline-coronavirus/
73.
Hoekstra
,
J. C.
, and
Leeflang
,
P. S.
,
2020
, “
Marketing in the Era of COVID-19
,”
Ital. J. Mark.
,
2020
(
4
), pp.
249
260
.
You do not currently have access to this content.