Graphical Abstract Figure

Curvilinear bone scaffold

Graphical Abstract Figure

Curvilinear bone scaffold

Close modal

Abstract

This work introduces a computational method for designing ceramic scaffolds fabricated via direct ink writing (DIW) for maximum bone growth, whereby the deposited rods are curvilinear. A mechanobiological model of bone adaptation is used to compute bone growth into the scaffold, taking into account the shape of the defect, the applied loading, and the density distribution of bone in which the scaffold is implanted. The method ensures that smooth, continuously varying rod contours are produced, which are ideal for the DIW process. The method uses level sets of radial basis functions to fully define the scaffold geometry with a small number of design variables, minimizing the optimization’s computational cost. Effective elastic properties of the scaffold as a function of the scaffold design and the bone density are obtained from previously constructed surrogates. These property surrogates are in turn used to perform bone adaptation simulations of the scaffold-bone system. Design sensitivities of the bone growth within the scaffold are computed using the direct sensitivity method. A demonstration of the methodology on a scaffold implanted in a pig mandible is presented. The scaffold is optimized to maximize bone ingrowth with geometric constraints to conform to the manufacturing process.

References

1.
Dimitriou
,
R.
,
Jones
,
E.
,
McGonagle
,
D.
, and
Giannoudis
,
P. V.
,
2011
, “
Bone Regeneration: Current Concepts and Future Directions
,”
BMC Med.
,
9
(
1
), p.
66
.
2.
Khan
,
S. N.
,
Cammisa
,
F. P.
,
Sandhu
,
H. S.
,
Diwan
,
A. D.
,
Girardi
,
F. P.
, and
Lane
,
J. M.
,
2005
, “
The Biology of Bone Grafting
,”
J. Am. Acad. Orthop. Surg.
,
13
(
1
), pp.
77
86
.
3.
Finkemeier
,
C. G.
,
2002
, “
Bone-Grafting and Bone-Graft Substitutes
,”
J. Bone Joint Surg.
,
84-A
(
3
), pp.
454
464
.
4.
Brydone
,
A. S.
,
Meek
,
D.
, and
MacLaine
,
S.
,
2010
, “
Bone Grafting, Orthopaedic Biomaterials, and the Clinical Need for Bone Engineering
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
224
(
12
), pp.
1329
1343
.
5.
Wang
,
W.
, and
Yeung
,
K. W. K. K.
,
2017
, “
Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review
,”
Bioact. Mater.
,
2
(
4
), pp.
224
247
.
6.
Lauthe
,
O.
,
Soubeyrand
,
M.
,
Babinet
,
A.
,
Dumaine
,
V.
,
Anract
,
P.
, and
Biau
,
D. J.
,
2018
, “
The Indications and Donor-Site Morbidity of Tibial Cortical Strut Autografts in the Management of Defects in Long Bones
,”
Bone Joint J.
,
100B
(
5
), pp.
667
674
.
7.
Amini
,
A. R.
,
Laurencin
,
C. T.
, and
Nukavarapu
,
S. P.
,
2012
, “
Bone Tissue Engineering: Recent Advances and Challenges
,”
Crit. Rev. Biomed. Eng.
,
40
(
5
), pp.
363
408
.
8.
Metz
,
C.
,
Duda
,
G. N.
, and
Checa
,
S.
,
2019
, “
Towards Multi-dynamic Mechano-Biological Optimization of 3D-Printed Scaffolds to Foster Bone Regeneration
,”
Acta Biomater.
,
101
(
1
), pp.
117
127
.
9.
Carter
,
D. R.
, and
Beaupré
,
G. S.
,
2001
,
Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration
,
Cambridge University Press
,
Cambridge
.
10.
Adachi
,
T.
,
Osako
,
Y.
,
Tanaka
,
M.
,
Hojo
,
M.
, and
Hollister
,
S. J.
,
2006
, “
Framework for Optimal Design of Porous Scaffold Microstructure by Computational Simulation of Bone Regeneration
,”
Biomaterials
,
27
(
21
), pp.
3964
3972
.
11.
Christen
,
P.
,
Ito
,
K.
,
Ellouz
,
R.
,
Boutroy
,
S.
,
Sornay-Rendu
,
E.
,
Chapurlat
,
R. D.
, and
Rietbergen
,
B. V.
,
2014
, “
Bone Remodelling in Humans is Load-Driven But Not Lazy
,”
Nat. Commun.
,
5
, p.
4855
.
12.
Giannoudis
,
P. V.
,
Einhorn
,
T. A.
, and
Marsh
,
D.
,
2007
, “
Fracture Healing: The Diamond Concept
,”
Injury
,
38
(
1
), pp.
S3
S6
.
13.
Soballe
,
K.
,
Hansen
,
E. S.
,
Brockstedt-Rasmussen
,
H.
, and
Bunger
,
C.
,
1993
, “
Hydroxyapatite Coating Converts Fibrous Tissue to Bone Around Loaded Implants
,”
J. Bone Joint Surg. - Ser. B
,
75
(
2
), pp.
270
278
.
14.
Almeida
,
H. A.
, and
Bártolo
,
P. J.
,
2014
, “
Design of Tissue Engineering Scaffolds Based on Hyperbolic Surfaces: Structural Numerical Evaluation
,”
Med. Eng. Phys.
,
36
(
8
), pp.
1033
1040
.
15.
Wieding
,
J.
,
Wolf
,
A.
, and
Bader
,
R.
,
2014
, “
Numerical Optimization of Open-Porous Bone Scaffold Structures to Match the Elastic Properties of Human Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
56
68
.
16.
Dias
,
M. R.
,
Guedes
,
J. M.
,
Flanagan
,
C. L.
,
Hollister
,
S. J.
, and
Fernandes
,
P. R.
,
2014
, “
Optimization of Scaffold Design for Bone Tissue Engineering: A Computational and Experimental Study
,”
Med. Eng. Phys.
,
36
(
4
), pp.
448
457
.
17.
Mohammed
,
M. I.
, and
Gibson
,
I.
,
2018
, “
Design of Three-Dimensional, Triply Periodic Unit Cell Scaffold Structures for Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071701
.
18.
Roberge
,
J.
, and
Norato
,
J.
,
2018
, “
Computational Design of Curvilinear Bone Scaffolds Fabricated Via Direct Ink Writing
,”
CAD Comput. Aid. Des.
,
95
, pp.
1
13
.
19.
Luo
,
D.
,
Rong
,
Q.
, and
Chen
,
Q.
,
2017
, “
Finite-Element Design and Optimization of a Three-Dimensional Tetrahedral Porous Titanium Scaffold for the Reconstruction of Mandibular Defects
,”
Med. Eng. Phys.
,
47
, pp.
176
183
.
20.
Sutradhar
,
A.
,
Paulino
,
G. H.
,
Miller
,
M. J.
, and
Nguyen
,
T. H.
,
2010
, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
30
), pp.
13222
13227
.
21.
Makowski
,
P.
, and
Kuś
,
W.
,
2016
, “
Optimization of Bone Scaffold Structures Using Experimental and Numerical Data
,”
Acta Mech.
,
227
(
1
), pp.
139
149
.
22.
Blázquez-Carmona
,
P.
,
Sanz-Herrera
,
J. A.
,
Martínez-Vázquez
,
F. J.
,
Domínguez
,
J.
, and
Reina-Romo
,
E.
,
2021
, “
Structural Optimization of 3D-Printed Patient-Specific Ceramic Scaffolds for in Vivo Bone Regeneration in Load-Bearing Defects
,”
J. Mech. Behav. Biomed. Mater.
,
121
, p.
104613
.
23.
Egan
,
P. F.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2017
, “
Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061401
.
24.
Egan
,
P. F.
,
Bauer
,
I.
,
Shea
,
K.
, and
Ferguson
,
S. J.
,
2019
, “
Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031703
.
25.
Byrne
,
D. P.
,
Lacroix
,
D.
,
Planell
,
J. A.
,
Kelly
,
D. J.
, and
Prendergast
,
P. J.
,
2007
, “
Simulation of Tissue Differentiation in a Scaffold as a Function of Porosity, Young’s Modulus and Dissolution Rate: Application of Mechanobiological Models in Tissue Engineering
,”
Biomaterials
,
28
(
36
), pp.
5544
5554
.
26.
Sanz-Herrera
,
J. A.
,
Garcia-Aznar
,
J. M.
, and
Doblare
,
M.
,
2008
, “
A Mathematical Model for Bone Tissue Regeneration Inside a Specific Type of Scaffold
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
355
366
.
27.
Bashkuev
,
M.
,
Checa
,
S.
,
Postigo
,
S.
,
Duda
,
G.
, and
Schmidt
,
H.
,
2015
, “
Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion
,”
J. Biomech.
,
48
(
12
), pp.
3274
3282
.
28.
Pobloth
,
A. M.
,
Checa
,
S.
,
Razi
,
H.
,
Petersen
,
A.
,
Weaver
,
J. C.
,
Chmidt-Bleek
,
K.
, and
Windolf
,
M.
,
2018
, “
Mechanobiologically Optimized 3D Titanium-Mesh Scaffolds Enhance Bone Regeneration in Critical Segmental Defects in Sheep
,”
Sci. Transl. Med.
,
10
(
423
), p.
eaam8828
.
29.
Paris
,
M.
,
Götz
,
A.
,
Hettrich
,
I.
,
Bidan
,
C. M.
,
Dunlop
,
J. W. C. C
,
Razi
,
H.
, and
Zizak
,
I.
,
2017
, “
Scaffold Curvature-Mediated Novel Biomineralization Process Originates a Continuous Soft Tissue-to-Bone Interface
,”
Acta. Biomater.
,
60
, pp.
64
80
.
30.
Wu
,
C.
,
Fang
,
J.
,
Entezari
,
A.
,
Sun
,
G.
,
Swain
,
M. V.
,
Xu
,
Y.
,
Steven
,
G. P.
, and
Li
,
Q.
,
2021
, “
A Time-Dependent Mechanobiology-Based Topology Optimization to Enhance Bone Growth in Tissue Scaffolds
,”
J. Biomech.
,
117
, p.
110233
.
31.
Boccaccio
,
A.
,
Fiorentino
,
M.
,
Uva
,
A. E.
,
Laghetti
,
L. N.
, and
Monno
,
G.
,
2018
, “
Rhombicuboctahedron Unit Cell Based Scaffolds for Bone Regeneration: Geometry Optimization With a Mechanobiology Driven Algorithm
,”
Mater. Sci. Eng. C
,
83
, pp.
51
66
.
32.
Cohen
,
D. O.
,
Aboutaleb
,
S. M. G. G
,
Johnson
,
A. W.
, and
Norato
,
J. A.
,
2021
, “
Bone Adaptation-Driven Design of Periodic Scaffolds
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121701
.
33.
Cohen
,
D. O.
,
Aboutaleb
,
S. M. G.
,
Johnson
,
A. J. W.
, and
Norato
,
J. A.
,
2022
,
Computational Design of Additively Manufactured Curvilinear Scaffolds for Bone Repair
, pp.
1
14
. ASME.
34.
Donato
,
G.
, and
Belongie
,
S.
,
2002
,
Approximate Thin Plate Spline Mappings
,
Springer
,
Berlin
, pp.
21
31
.
35.
Simeunović
,
A.
, and
Hoelzle
,
D. J.
,
2020
, “
Nonlinear and Linearized Gray Box Models of Direct-Write Printing Dynamics
,”
Rapid Prototyp. J.
,
26
(
10
), pp.
1665
1676
.
36.
Levengood
,
S. K. L.
,
Polak
,
S. J.
,
Wheeler
,
M. B.
,
Maki
,
A. J.
,
Clark
,
S. G.
,
Jamison
,
R. D.
, and
Johnson
,
A. J. W.
,
2010
, “
Multiscale Osteointegration as a New Paradigm for the Design of Calcium Phosphate Scaffolds for Bone Regeneration
,”
Biomaterials
,
31
(
13
), pp.
3552
3563
.
37.
Hoelzle
,
D. J.
,
Alleyne
,
A. G.
, and
Johnson
,
A. J. W.
,
2008
, “
Micro-Robotic Deposition Guidelines by a Design of Experiments Approach to Maximize Fabrication Reliability for the Bone Scaffold Application
,”
Acta Biomater.
,
4
(
4
), pp.
897
912
.
38.
Wright
,
G. B.
,
1997
, “
Radial Basis Function Interpolation: Numerical and Analytical Developments
,” Ph.D. thesis,
University of Colorado
,
Boulder, CO
.
39.
Baxter
,
B.
,
2010
, “The Interpolation Theory of Radial Basis Functions,” August. No. 1006.2443, http://arxiv.org/abs/1006.2443.
40.
Buhmann
,
M. D.
,
2000
, “
Radial Basis Functions
,”
Acta Numerica
,
9
, pp.
1
38
.
41.
Buhmann
,
M. D.
,
2003
,
Radial Basis Functions: Theory and Implementations
,
Cambridge University Press
,
Cambridge
.
42.
Jacobs
,
C. R.
,
1994
, “
Numerical Simulation of Bone Adaptation To Mechanical Loading
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
.
43.
Grimstad
,
B.
, et al.,
2015
, SPLINTER: A Library for Multivariate Function Approximation With Splines. http://github.com/bgrimstad/splinter, Accessed May 16, 2015.
44.
Beyer
,
W. A.
,
Fawcett
,
L. R.
,
Hartem
,
L. P.
, and
Swartz
,
B. K.
,
1992
, “
The Volume Common to Two Congruent Circular Cylinders
,”
J. Symbolic Comput.
,
13
(
2
), pp.
221
230
.
45.
Lambe
,
A. B.
,
Kennedy
,
G. J.
, and
Martins
,
J. R. R. A.
,
2017
, “
An Evaluation of Constraint Aggregation Strategies for Wing Box Mass Minimization
,”
Struct. Multidiscipl. Optim.
,
55
(
1
), pp.
257
277
.
46.
Tortorelli
,
D. A
, and
Michaleris
,
P.
,
1994
, “
Design Sensitivity Analysis: Overview and Review
,”
Inverse Probl. Eng.
,
1
(
1
), pp.
71
103
.
47.
Michaleris
,
P.
,
Tortorelli
,
D. A
, and
Vidal
,
C. A.
,
1994
, “
Tangent Operators and Design Sensitivity Coupled Problems With Applications to Elastoplasticity Formulations for Transient Non-linear
,”
Int. J. Numerical Methods Eng.
,
37
(
14
), pp.
2471
2499
.
48.
Alberdi
,
R.
,
Zhang
,
G.
,
Li
,
L.
, and
Khandelwal
,
K.
,
2018
, “
A Unified Framework for Nonlinear Path-Dependent Sensitivity Analysis in Topology Optimization
,”
Int. J. Numerical Methods Eng.
,
115
(
1
), pp.
1
56
.
49.
Koric
,
S.
,
Lu
,
Q.
, and
Guleryuz
,
E.
,
2014
, “
Evaluation of Massively Parallel Linear Sparse Solvers on Unstructured Finite Element Meshes
,”
Comput. Struct.
,
141
, pp.
19
25
.
50.
Polak
,
S. J.
,
Levengood
,
S. K. L.
,
Wheeler
,
M. B.
,
Maki
,
A. J.
,
Clark
,
S. G.
, and
Johnson
,
A. J. W.
,
2011
, “
Analysis of the Roles of Microporosity and BMP-2 on Multiple Measures of Bone Regeneration and Healing in Calcium Phosphate Scaffolds
,”
Acta Biomater.
,
7
(
4
), pp.
1760
1771
.
51.
Woodard
,
J. R.
,
Hilldore
,
A. J.
,
Lan
,
S. K.
,
Park
,
C. J.
,
Morgan
,
A. W.
,
Eurell
,
J. A. C.
,
Clark
,
S. G.
,
Wheeler
,
M. B.
,
Jamison
,
R. D.
, and
Johnson
,
A. J. W.
,
2007
, “
The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds With Multi-scale Porosity
,”
Biomaterials
,
28
(
1
), pp.
45
54
.
52.
Arndt
,
D.
,
Bangerth
,
W.
,
Feder
,
M.
,
Fehling
,
M.
,
Gassmöller
,
R.
,
Heister
,
T.
, and
Heltai
,
L.
,
2022
, “
The Deal.II Library, Version 9.4
,”
J. Numerical Math.
,
30
(
3
), pp.
231
246
.
53.
Team
,
Trilinos Project. The Trilinos Project
, 2023, https://trilinos.github.io.
54.
Hyperworks
.
Hyperwork 2017.3
. (
2017
). https://www.altair.com/hypermesh/.
55.
Liu
,
Z. J.
, and
Herring
,
S. W.
,
2000
, “
Masticatory Strains on Osseous and Ligamentous Components of the Temporomandibular Joint in Miniature Pigs
,”
J. Orofacial Pain
,
14
, pp.
265
278
.
56.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
, and
Burovski
,
E.
,
2020
, “
{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods.
,
17
(
3
), pp.
261
272
.
57.
Zhu
,
T.
,
Cui
,
Y.
,
Zhang
,
M.
,
Zhao
,
D.
,
Liu
,
G.
, and
Ding
,
J.
,
2020
, “
Engineered Three-dimensional Scaffolds for Enhanced Bone Regeneration in Osteonecrosis
,”
Bioact. Mater.
,
5
(
3
), pp.
584
601
.
58.
Michna
,
S.
,
Wu
,
W.
, and
Lewis
,
J. A.
,
2005
, “
Concentrated Hydroxyapatite Inks for Direct-write Assembly of 3-D Periodic Scaffolds
,”
Biomaterials
,
26
(
28
), pp.
5632
5639
.
59.
Smay
,
J. E.
,
Cesarano
,
J.
, and
Lewis
,
J. A.
,
2002
, “
Colloidal Inks for Directed Assembly of 3-D Periodic Structures
,”
Langmuir
,
18
(
14
), pp.
5429
5437
.
61.
Langenbach
,
G. E. J. J.
,
Zhang
,
F.
,
Herring
,
S. W.
, and
Hannam
,
A. G.
,
2002
, “
Modelling the Masticatory Biomechanics of a Pig
,”
J. Anat.
,
201
(
5
), pp.
383
393
.
62.
Biewener
,
A. A.
,
2005
, “
Biomechanical Consequences of Scaling
,”
J. Exp. Biol.
,
208
(
9
), pp.
1665
1676
.
63.
Bigelow
,
J. A.
, and
Houpt
,
T. R.
,
1988
, “
Feeding and Drinking Patterns in Young Pigs
,”
Physiol. Behav.
,
43
(
1
), pp.
99
109
.
64.
Herring
,
S. W.
,
1976
, “
The Dynamics of Mastication in Pigs
,”
Arch. Oral. Biol.
,
21
(
8
), pp.
473
480
.
65.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-mapping Methods for Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1597
1638
.
You do not currently have access to this content.