Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Orthoses play a critical role in rehabilitation by providing fracture stabilization, external load protection, and deformity correction. Traditional methods of orthotic manufacturing often result in increased bulkiness and weight due to material and processing limitations, and reduced breathability leading to potential skin problems. This study aims to enhance structural performance of orthoses through the utilization of a fiber-reinforced composite lattice design fabricated using a coreless filament winding process. An arm brace was designed and manufactured, which incorporates four modules made of fiberglass/polystyrene composite lattices assembled together using adjustable thermoplastic connectors. To simulate the structural performance, a finite element model (FEM) was constructed with careful consideration of the interactions between the connectors and the lattice modules, and this was subsequently validated through experiment. In comparison to a benchmark brace made of polylactic acid lattice, the composite brace exhibits a significant reduction in thickness (59%) and weight (38%) while maintaining similar structural performance. The validation test indicates the FEM’s reliability in predicting structural stiffness and strength of the composite brace, with the predicted load-bearing capacity being slightly conservative (5%) compared to experimental results. Composite lattice structures represent a significant advancement in the design of lightweight, high strength, and breathable orthoses. Moreover, the developed FEM serves as a valuable tool for accurately predicting structural performance and optimizing orthotic design under varying loading conditions.

References

1.
Kumar
,
R.
, and
Sarangi
,
S. K.
,
2021
, “3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process,”
Advances in Materials Processing and Manufacturing Applications
,
A.
Patnaik
,
E.
Kozeschnik
, and
V.
Kukshal
, eds.,
Springer Singapore
, pp.
531
538
.
2.
Ambu
,
R.
,
Motta
,
A.
, and
Calí
,
M.
,
2020
, “Design of a Customized Neck Orthosis for FDM Manufacturing With a New Sustainable Bio-Composite,”
Design Tools and Methods in Industrial Engineering
,
C.
Rizzi
,
A. O.
Andrisano
,
F.
Leali
,
F.
Gherardini
,
F.
Pini
, and
A.
Vergnano
, eds.,
Springer International Publishing
, pp.
707
718
.
3.
Mo
,
Y.
,
Qaiser
,
Z.
,
Ou
,
H.
, and
Johnson
,
S.
,
2021
, “
A Reconfigurable and Adjustable Compliance System for the Measurement of Interface Orthotic Properties
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
1886
1894
.
4.
Hale
,
L.
,
Linley
,
E.
, and
Kalaskar
,
D. M.
,
2020
, “
A Digital Workflow for Design and Fabrication of Bespoke Orthoses Using 3D Scanning and 3D Printing, a Patient-Based Case Study
,”
Sci. Rep.
,
10
(
1
), p.
7028
.
5.
Kotwicki
,
T.
,
Durmala
,
J.
, and
Czubak
,
J.
,
2008
, “
Bracing for Neuromuscular Scoliosis: Orthosis Construction to Improve the Patient’s Function
,”
Disabil. Rehabil. Assist. Technol.
,
3
(
3
), pp.
161
169
.
6.
Redaelli
,
D. F.
,
Abbate
,
V.
,
Storm
,
F. A.
,
Ronca
,
A.
,
Sorrentino
,
A.
,
De Capitani
,
C.
,
Biffi
,
E.
,
Ambrosio
,
L.
,
Colombo
,
G.
, and
Fraschini
,
P.
,
2020
, “
3D Printing Orthopedic Scoliosis Braces: A Test Comparing FDM With Thermoforming
,”
Int. J. Adv. Manuf. Technol.
,
111
(
5–6
), pp.
1707
1720
.
7.
Cazon
,
A.
,
Kelly
,
S.
,
Paterson
,
A. M.
,
Bibb
,
R. J.
, and
Campbell
,
R. I.
,
2017
, “
Analysis and Comparison of Wrist Splint Designs Using the Finite Element Method: Multi-material Three-Dimensional Printing Compared to Typical Existing Practice With Thermoplastics
,”
Proc. Inst. Mech. Eng.
,
231
(
9
), pp.
881
897
.
8.
Gorski
,
F.
,
Wichniarek
,
R.
,
Kuczko
,
W.
,
Zukowska
,
M.
,
Lulkiewicz
,
M.
, and
Zawadzki
,
P.
,
2020
, “
Experimental Studies on 3D Printing of Automatically Designed Customized Wrist-Hand Orthoses
,”
Materials
,
13
(
18
), p.
4091
.
9.
Han
,
K.
,
Bae
,
K.
,
Levine
,
N.
,
Yang
,
J.
, and
Lee
,
J.-S.
,
2019
, “
Biomechanical Effect of Foot Orthoses on Rearfoot Motions and Joint Moment Parameters in Patients With Flexible Flatfoot
,”
Med. Sci. Monit.
,
25
, pp.
5920
5928
.
10.
Pallari
,
J. H.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
.
11.
Cha
,
Y. H.
,
Lee
,
K. H.
,
Ryu
,
H. J.
,
Joo
,
I. W.
,
Seo
,
A.
,
Kim
,
D.-H.
, and
Kim
,
S. J.
,
2017
, “
Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software
,”
Appl. Bionics Biomech.
,
2017
, pp.
1
6
.
12.
Zou
,
D.
,
He
,
T.
,
Dailey
,
M.
,
Smith
,
K. E.
,
Silva
,
M. J.
,
Sinacore
,
D. R.
,
Mueller
,
M. J.
, and
Hastings
,
M. K.
,
2014
, “
Experimental and Computational Analysis of Composite Ankle-Foot Orthosis
,”
J. Rehabil. Res. Dev.
,
51
(
10
), pp.
1525
1536
.
13.
Andrysek
,
J.
,
Leineweber
,
M. J.
, and
Lee
,
H.
,
2017
, “
Development and Evaluation of a Mechanical Stance-Controlled Orthotic Knee Joint With Stance Flexion
,”
ASME J. Mech. Des.
,
139
(
3
), p.
035001
.
14.
Salles
,
A. S.
, and
Gyi
,
D. E.
,
2013
, “
An Evaluation of Personalised Insoles Developed Using Additive Manufacturing
,”
J. Sports Sci.
,
31
(
4
), pp.
442
450
.
15.
Qaiser
,
Z.
,
Faraz
,
A.
, and
Johnson
,
S.
,
2020
, “
Feasibility Study of a Rapid Evaluate and Adjust Device (READ) for Custom Foot Orthoses Prescription
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
8
), pp.
1760
1770
.
16.
Buonamici
,
F.
,
Furferi
,
R.
,
Governi
,
L.
,
Lazzeri
,
S.
,
McGreevy
,
K.
,
Servi
,
M.
,
Talanti
,
E.
,
Ucchedd
,
F.
, and
Volpe
,
Y.
,
2019
, “
A CAD-Based Procedure for Designing 3D Printable Arm-Wrist-Hand Cast
,”
Comput.-Aided Des. Appl.
,
16
(
1
), pp.
25
34
.
17.
Chen
,
R. K.
,
Jin
,
Y.-A.
,
Wensman
,
J.
, and
Shih
,
A.
,
2016
, “
Additive Manufacturing of Custom Orthoses and Prostheses – A Review
,”
Addit. Manuf.
,
12
, pp.
77
89
.
18.
Irzmańska
,
E.
,
Brochocka
,
A.
, and
Majchrzycka
,
K.
,
2012
, “
Textile Composite Materials With Bioactive Melt-Blown Nonwovens for Protective Footwear
,”
Fibres Text. East. Eur.
,
20
(
5
), pp.
119
125
.
19.
Miao
,
T.
,
Wang
,
P.
,
Zhang
,
N.
, and
Li
,
Y.
,
2021
, “
Footwear Microclimate and Its Effects on the Microbial Community of the Plantar Skin
,”
Sci. Rep
,
11
(
1
), p.
20356
.
20.
Lin
,
H.
,
Shi
,
L.
, and
Wang
,
D.
,
2016
, “
A Rapid and Intelligent Designing Technique for Patient-Specific and 3D-Printed Orthopedic Cast
,”
3D Print. Med.
,
2
(
1
), p.
4
.
21.
Sorimpuk
,
N. P.
,
Choong
,
W. H.
, and
Chua
,
B. L.
,
2022
, “
Design of Thermoformable Three Dimensional-Printed PLA Cast for Fractured Wrist
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1217
(
1
), p.
012002
.
22.
Kim
,
S. J.
,
Kim
,
S. J.
,
Cha
,
Y. H.
,
Lee
,
K. H.
, and
Kwon
,
J. -Y.
,
2018
, “
Effect of Personalized Wrist Orthosis for Wrist Pain With Three-Dimensional Scanning and Printing Technique: A Preliminary, Randomized, Controlled, Open-Label Study
,”
Prosthet. Orthot. Int.
,
42
(
6
), pp.
636
643
.
23.
Hunt
,
C. J.
,
Zhao
,
Y.
,
Wisnom
,
M. R.
, and
Woods
,
B. K.
,
2020
, “
WrapToR Composite Truss Structures: Measurement and Modelling of Mechanical Response
,”
Compos. Struct.
,
254
, p.
112834
.
24.
Woods
,
B. K. S.
,
Hill
,
I.
, and
Friswell
,
M. I.
,
2016
, “
Ultra-Efficient Wound Composite Truss Structures
,”
Compos. Part Appl. Sci. Manuf.
,
90
, pp.
111
124
.
25.
Mo
,
Y.
,
Ye
,
S.
,
Qaiser
,
Z.
, and
Johnson
,
S.
,
2023
, “
Structural and Winding Sequence Optimization of Coreless Filament Wound Composite Lattice Structures
,”
Int. J. Adv. Manuf. Technol.
,
127
(
9
), pp.
4903
4914
.
26.
Mindermann
,
P.
,
Müllner
,
R.
,
Dieringer
,
E.
,
Ocker
,
C.
,
Klink
,
R.
,
Merkel
,
M.
, and
Gresser
,
G. T.
,
2022
, “
Design of Fiber-Composite/Metal-Hybrid Structures Made by Multi-stage Coreless Filament Winding
,”
Appl. Sci.
,
12
(
5
), p.
2296
.
27.
Solly
,
J.
,
Früh
,
N.
,
Saffarian
,
S.
,
Aldinger
,
L.
,
Margariti
,
G.
, and
Knippers
,
J.
,
2019
, “
Structural Design of a Lattice Composite Cantilever
,”
Structures
,
18
, pp.
28
40
.
28.
La Magna
,
R.
,
Waimer
,
F.
, and
Knippers
,
J.
,
2016
, “
Coreless Winding and Assembled Core – Novel Fabrication Approaches for FRP Based Components in Building Construction
,”
Constr. Build. Mater.
,
127
, pp.
1009
1016
.
29.
Minsch
,
N.
,
Müller
,
M.
,
Gereke
,
T.
,
Nocke
,
A.
, and
Cherif
,
C.
,
2019
, “
3D Truss Structures With Coreless 3D Filament Winding Technology
,”
J. Compos. Mater.
,
53
(
15
), pp.
2077
2089
.
30.
Chen
,
Y.
,
Lin
,
H.
,
Yu
,
Q.
,
Zhang
,
X.
,
Wang
,
D.
,
Shi
,
L.
,
Huang
,
W.
, and
Zhong
,
S.
,
2020
, “
Application of 3D-Printed Othopedic Cast for the Treatment of Forearm Fractures: Finite Element Analysis and Comparative Clinical Assessment
,”
BioMed Res. Int.
,
2020
(
1
), pp.
1
12
.
31.
Berner
,
S. H.
, and
Willis
,
F. B.
,
2010
, “
Dynamic Splinting in Wrist Extension Following Distal Radius Fractures
,”
J. Orthop. Surg. Res.
,
5
(
1
), p.
53
.
32.
Jones
,
K. A.
,
Cancio
,
J. M.
,
Stanley
,
B.
,
Truax
,
C.
, and
Gower
,
J. T.
,
2021
, “
Design and Fabrication of the Radial and Ulnar Wrist Articulating Control Orthoses
,”
J. Hand Ther.
,
34
(
1
), pp.
47
52
.
33.
Li
,
J.
, and
Tanaka
,
H.
,
2018
, “
Feasibility Study Applying a Parametric Model as the Design Generator for 3D-Printed Orthosis for Fracture Immobilization
,”
3D Print Med
,
4
(
1
), p.
1
.
34.
Li
,
J.
, and
Tanaka
,
H.
,
2018
, “
Rapid Customization System for 3D-Printed Splint Using Programmable Modeling Technique – A Practical Approach
,”
3D Print Med.
,
4
(
1
), p.
5
.
35.
Remešíková
,
M.
,
Šagát
,
M.
, and
Novysedlák
,
P.
,
2019
, “
Discrete Lagrangian Algorithm for Finding Geodesics on Triangular Meshes
,”
Appl. Math. Models
,
76
, pp.
396
427
.
36.
Somireddy
,
M.
, and
Czekanski
,
A.
,
2020
, “
Anisotropic Material Behavior of 3D Printed Composite Structures – Material Extrusion Additive Manufacturing
,”
Mater. Des.
,
195
, p.
108953
.
37.
Qaiser
,
Z.
,
Yang
,
K.
,
Chen
,
R.
,
Ou
,
H.
,
Faraz
,
A.
, and
Johnson
,
S.
,
2022
, “
Case Study of a Novel Multi-Actuated Optimized Reconfigurable Freeform Surface (MORFS) Mold for Custom Foot Orthoses
,”
Int. J. Adv. Manuf. Technol.
,
120
(
5–6
), pp.
3831
3842
.
38.
Qaiser
,
Z.
,
Yang
,
K.
,
Chen
,
R.
, and
Johnson
,
S.
,
2024
, “
Variability-Enhanced Knowledge-Based Engineering (VEN) for Reconfigurable Molds
,”
J. Intell. Manuf.
, pp.
1
13
.
You do not currently have access to this content.