Mechanical advantage is traditionally defined for single-input and single-output rigid-body mechanisms. A generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms, would prove useful in predicting complex mechanism behavior. While origami-based mechanisms are capable of offering unique solutions to engineering problems, the design process of such mechanisms is complicated by the interaction of motion and forces. This paper presents a model of the mechanical advantage for multi-input compliant mechanisms and explores how modifying the parameters of a model affects their behavior. The model is used to predict the force-deflection behavior of an origami-based mechanism (Oriceps) and is verified with experimental data from magnetic actuation of the mechanism.

References

1.
Salamon
,
B.
, and
Midha
,
A.
,
1998
, “
An Introduction to Mechanical Advantage in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
311
315
.
2.
Zhou
,
L.
,
Marras
,
A. E.
,
Castro
,
C. E.
, and
Su
,
H.-J.
,
2016
, “
Pseudorigid-Body Models of Compliant Dna Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051013
.
3.
Miyashita
,
S.
,
Guitron
,
S.
,
Ludersdorfer
,
M.
,
Sung
,
C. R.
, and
Rus
,
D.
,
2015
, “
An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1490
1496
.
4.
Miyashita
,
S.
,
Guitron
,
S.
,
Yoshida
,
K.
,
Li
,
S.
,
Damian
,
D. D.
, and
Rus
,
D.
,
2016
, “
Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
909
916
.
5.
Taylor
,
A.
,
Miller
,
M.
,
Fok
,
M.
,
Nilsson
,
K.
, and
Tse
,
Z. T. H.
,
2016
, “
Intracardiac Magnetic Resonance Imaging Catheter With Origami Deployable Mechanisms
,”
ASME J. Med. Devices
,
10
(
2
), p.
020957
.
6.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assisted Radiol. Surg.
,
12
(11), pp.
1
10
.
7.
Zirbel
,
S.
,
Magleby
,
S.
,
Howell
,
L.
,
Lang
,
R.
,
Thomson
,
M.
, and
Trease
,
B.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable arrays1
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
8.
Butler
,
J.
,
Morgan
,
J.
,
Pehrson
,
N.
,
Tolman
,
K.
,
Bateman
,
T.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Highly Compressible Origami Bellows for Harsh Environments
,”
ASME
Paper No. DETC2016-59060.
9.
Qiao
,
Q.
,
Yuan
,
J.
,
Shi
,
Y.
,
Ning
,
X.
, and
Wang
,
F.
,
2017
, “
Structure, Design, and Modeling of an Origami-Inspired Pneumatic Solar Tracking System for the Npu-Phonesat
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011004
.
10.
Miyashita
,
S.
,
DiDio
,
I.
,
Ananthabhotla
,
I.
,
An
,
B.
,
Sung
,
C.
,
Arabagi
,
S.
, and
Rus
,
D.
,
2015
, “
Folding Angle Regulation by Curved Crease Design for Self-Assembling Origami Propellers
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021013
.
11.
Baranger
,
E.
,
Guidault
,
P.-A.
, and
Cluzel
,
C.
,
2011
, “
Numerical Modeling of the Geometrical Defects of an Origami-like Sandwich Core
,”
Compos. Struct.
,
93
(
10
), pp.
2504
2510
.
12.
Nojima
,
T.
, and
Saito
,
K.
,
2006
, “
Development of Newly Designed Ultra-Light Core Structures
,”
JSME Int. J. Ser. A Solid Mech. Mater. Eng.
,
49
(
1
), pp.
38
42
.
13.
Cheng
,
Q.
,
Song
,
Z.
,
Ma
,
T.
,
Smith
,
B.
,
Tang
,
R.
,
Yu
,
H.
,
Jiang
,
H.
, and
Chan
,
C.
,
2013
, “
Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities
,”
Nano Lett.
,
13
(
10
), pp.
4969
4974
.
14.
Firouzeh
,
A.
, and
Paik
,
J.
,
2017
, “
An Under-Actuated Origami Gripper With Adjustable Stiffness Joints for Multiple Grasp Modes
,”
Smart Mater. Struct.
,
26
(
5
), p.
055035
.
15.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
16.
Firouzeh
,
A.
, and
Paik
,
J.
,
2015
, “
Robogami: A Fully Integrated Low-Profile Robotic Origami
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021009
.
17.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
18.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
19.
Onal
,
C. L.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
20.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
21.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
Single-Vertex Multicrease Rigid Origami With Nonzero Thickness and Its Transformation Into Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011010
.
22.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(2), p. 021001.
23.
Edmondson
,
B.
,
Bowen
,
L.
,
Grames
,
G.
,
Magleby
,
S.
,
Howell
,
L.
, and
Bateman
,
T.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME
Paper No. SMASIS2013-3299.
24.
Bowen
,
L.
,
Grames
,
C.
,
Magleby
,
S.
,
Lang
,
R.
, and
Howell
,
L.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
25.
Midha
,
A.
,
Hall
,
A. S.
,
Her
,
I.
, and
Bubel
,
G.
,
1984
, “
Mechanical Advantage of Single-Input and Multiple-Output Ports Mechanical Device
,”
ASME J. Mech. Trans., Autom. Des.
,
106
(
4
), pp.
462
469
.
26.
Wang
,
M. Y.
,
2009
, “
Mechanical and Geometric Advantages in Compliant Mechanism Optimization
,”
Front. Mech. Eng. China
,
4
(
3
), pp.
229
241
.
27.
Shafer
,
J.
,
2010
,
Origami Ooh La La!
,
CreateSpace Independent Publishing Platform
,
Lexington, KY
.
28.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, New York.
29.
Liu
,
Y.
,
Boyles
,
J.
,
Genzer
,
J.
, and
Dickey
,
M.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(6), pp. 1764–1769.
30.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K.
,
Qi
,
H.
, and
Dunn
,
M.
,
2012
, “
Photo-Origami - Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(16), p. 161908.
31.
Sun
,
W.
,
Liu
,
F.
,
Ma
,
Z.
,
Li
,
C.
, and
Zhou
,
J.
,
2016
, “
Soft Mobile Robots Driven by Foldable Dielectric Elastomer Actuators
,”
J. Appl. Phys.
,
120
(
8
), p.
084901
.
32.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modelling and Experiments
,”
ASME Paper No
. V06BT07A028.
33.
Ahmed
,
S.
,
Ounaies
,
Z.
, and
Frecker
,
M.
,
2014
, “
Investigating the Performance and Properties of Dielectric Elastomer Actuators as a Potential Means to Actuate Origami Structures
,”
Smart Mater. Struct.
,
23
(
9
), p. 094003.
34.
McGough
,
K.
,
Ahmed
,
S.
,
Frecker
,
M.
, and
Ounaies
,
Z.
,
2014
, “
Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami
,”
Smart Mater. Struct.
,
23
(
9
), p. 094002.
35.
Shigemune
,
H.
,
Maeda
,
S.
,
Hara
,
Y.
,
Hosoya
,
N.
, and
Hashimoto
,
S.
,
2016
, “
Origami Robot: A Self-Folding Paper Robot With an Electrothermal Actuator Created by Printing
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2746
2754
.
36.
Bowen
,
L.
,
Springsteen
,
K.
,
Ahmed
,
S.
,
Arrojado
,
E.
,
Frecker
,
M.
,
Simpson
,
T. W.
,
Ounaies
,
Z.
, and
von Lockette
,
P.
,
2017
, “
Design, Fabrication, and Modeling of an Electric–Magnetic Self-Folding Sheet
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021012
.
37.
Cowan
,
B.
, and
von Lockette
,
P. R.
,
2017
, “
Fabrication, Characterization, and Heuristic Trade Space Exploration of Magnetically Actuated Miura-Ori Origami Structures
,”
Smart Mater. Struct.
,
26
(
4
), p.
045015
.
38.
Crivaro
,
A.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
Von Lockette
,
P.
,
2016
, “
Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation
,”
J. Intell. Mater. Syst. Struct.
,
27
(
15
), pp.
2049
2061
.
39.
Guitron
,
S.
,
Guha
,
A.
,
Li
,
S.
, and
Rus
,
D.
,
2017
, “
Autonomous Locomotion of a Miniature, Untethered Origami Robot Using Hall Effect Sensor-Based Magnetic Localization
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29–June 3, pp.
4807
4813
.
40.
Salerno
,
M.
,
Zuliani
,
F.
,
Firouzeh
,
A.
, and
Paik
,
J.
,
2017
, “
Design and Control of a Low Profile Electromagnetic Actuator for Foldable Pop-Up Mechanisms
,”
Sens. Actuators A: Phys.
,
265
, pp. 70–78.
41.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
,
Malak
,
R. J.
,
Akleman
,
E.
,
Gonen
,
O.
, and
Kung
,
H.-W.
,
2016
, “
Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031015
.
42.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(28), pp. 12441–12445.
43.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T.
, and von Lockette, P.,
2015
, “
Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Des.
,
7
(1), p. 011010.
44.
Sheridan
,
R.
,
Roche
,
J.
,
Lofland
,
S.
, and
von Lockette
,
P.
,
2014
, “
Numerical Simulation and Experimental Validation of the Large Deformation Bending and Folding Behavior of Magneto-Active Elastomer Composites
,”
Smart Mater. Struct.
,
23
(
9
), p. 094004.
45.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2015
, “
Single-Degree-of-Freedom Rigidly Foldable Origami Flashers
,”
ASME
Paper No. DETC2015-46961.
46.
Griffiths
,
D. J.
,
1999
,
Introduction to Electrodynamics
, 3rd ed.,
Prentice Hall
, Upper Saddle River, NJ.
47.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
You do not currently have access to this content.