Among Bricard's overconstrained 6R linkages, the third type has two collapsed configurations, where all joint axes are coplanar. This paper presents a one-degree-of-freedom network of such linkages. Using the two coplanar states of the constituent Bricard units, the network is able to cover a large surface with a specific outline when deployed and can be folded compactly into a stack of much smaller planar shapes. Five geometric parameters describing each type III Bricard mechanism are introduced. Their influence on the outline of one collapsed configuration is discussed and inverse calculation to obtain the parameter values yielding a desired planar shape is performed. The network is built by linking the units, either using scissor linkage elements, if the thickness of the panels can be ignored, or with hinged parallelograms, for a thicker material. Two case studies, in which the Bricard network deploys as a rectangle and a regular hexagon, respectively, are presented, validating the analysis and design methods.

References

1.
Escrig
,
F.
,
Valcarcel
,
J. P.
, and
Sanchez
,
J.
,
1996
, “
Deployable Cover on a Swimming Pool in Seville
,”
Bull. Int. Assoc. Shell Spatial Struct.
,
37
(
120
), pp.
39
70
.
2.
Zhao, J. S., Wang, J. Y., Chu, F. L., Feng, Z. J., and Dai, J. S.,
2012
, “
Mechanism Synthesis of a Foldable Stair
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
014502
.
3.
Durand
,
G.
,
Sauvage
,
M.
,
Bonnet
,
A.
,
Rodriguez
,
L.
,
Ronayette
,
S.
,
Chanial
,
P.
,
Scola
,
L.
,
Révéret
,
V.
,
Aussel
,
H.
,
Carty
,
M.
,
Durand
,
M.
,
Durand
,
L.
,
Tremblin
,
P.
,
Pantin
,
E.
,
Berthe
,
E.
,
Martignac
,
J.
,
Motte
,
F.
,
Talvard
,
M.
,
Minier
,
V.
, and
Bultel
,
P.
,
2014
, “
Talc: A New Deployable Concept for a 20-m Far-Infrared Space Telescope
,”
Proc. SPIE
,
9143
, p.
91431A
.
4.
Hoberman
,
C.
,
1991
, “
Radial Expansion/Retraction Truss Structures
,” Nokia Deutschland GmbH, Munich, Germany, U.S. Patent No.
5,024,031
.https://patents.google.com/patent/US5024031
5.
Maden
,
F.
,
Korkmaz
,
K.
, and
Akgün
,
Y.
,
2011
, “
A Review of Planar Scissor Structural Mechanisms: Geometric Principles and Design Methods
,”
Archit. Sci. Rev.
,
54
(
3
), pp.
246
257
.
6.
Yang
,
Y.
,
Tian
,
Y.
,
Peng
,
Y.
, and
Pu
,
H.
,
2017
, “
A Novel 2-DOF Planar Translational Mechanism Composed by Scissor-like Elements
,”
Mech. Sci.
,
8
(
1
), pp.
179
193
.
7.
Yang
,
Y.
,
Peng
,
Y.
,
Pu
,
H.
, and
Cheng
,
Q.
,
2018
, “
Design of 2-DOF Planar Translational Mechanisms With Parallel Linear Motion Elements for an Automatic Docking Device
,”
Mech. Mach. Theory
,
121
, pp.
398
424
.
8.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.http://www.eng.ox.ac.uk/civil/publications/theses/chen.pdf
9.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
10.
Qi
,
X. Z.
,
Deng
,
Z. Q.
,
Li
,
B.
,
Liu
,
R. Q.
, and
Guo
,
H. W.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3–4
), pp.
147
155
.
11.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
12.
Bricard
,
R.
,
1897
, “
Mémoire Sur la Théorie de L'octaèdre Articulé
,”
J. Math. Pures Appl.
,
3
, pp.
113
148
.
13.
Bushmelev
,
A. V.
, and
Sabitov
,
I. K.
,
1991
, “
Configuration Spaces of Bricard Octahedra
,”
J. Math. Sci.
,
53
(
5
), pp.
487
491
.
14.
Baker
,
J. E.
,
2009
, “
On the Skew Network Corresponding to Bricard's Doubly Collapsible Octahedron
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
5
), pp.
1213
1221
.
15.
Waldron
,
K. J.
,
1969
, “
Symmetric Overconstrained Linkages
,”
J. Eng. Ind.
,
91
(
1
), pp.
158
162
.
16.
Waldron
,
K. J.
,
1979
, “
Overconstrained Linkages
,”
Environ. Plann. B: Plann. Des.
,
6
(
4
), pp.
393
402
.
17.
López-Custodio
,
P.
,
Dai
,
J.
, and
Rico
,
J.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031002
.
18.
López-Custodio
,
P.
,
Dai
,
J.
, and
Rico
,
J.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Line-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031003
.
19.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
.
20.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S.
,
2015
, “
Folding Type III Bricard Linkages
,”
14th World Congress in Mechanism and Machine Science
, Taipei, Taiwan, Oct. 25–30, pp.
455
462
.http://www2.eng.cam.ac.uk/~sdg/preprint/FoldingBricard.pdf
21.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2016
, “
Reconfigurable Chains of Bifurcating Type III Bricard Linkages
,”
Advances in Reconfigurable Mechanisms and Robots II
,
Springer
, Berlin, pp.
3
14
.
22.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2015
, “
A Network of Type III Bricard Linkages
,”
ASME
Paper No DETC2015-47139.
23.
Goldberg
,
M.
,
1942
, “
Linkages Polyhedral
,”
Natl. Math. Mag.
,
16
(
7
), pp.
323
332
.
24.
Connelly
,
R.
,
1979
, “
The Rigidity of Polyhedral Surfaces
,”
Math. Mag.
,
52
(
5
), pp.
275
283
.
You do not currently have access to this content.