The parallel mechanism with a reconfigurable platform retains all advantages of parallel mechanisms and provides additional functions by virtue of the reconfigurable platform, leading to kinematic coupling between limbs that restricts development of the mechanism. This paper aims at dealing with kinematic coupling between limbs by investigating the transferability of limb constraints and their degrees of relevance to the platform constraints based on the geometric model of the mechanism. The paper applies screw-system theory to verifying the degree of relevance between limb constraint wrenches and platform constraint wrenches, and reveals the transferability of limb constraints, to obtain the final resultant wrenches and twists of the end effector. The proposed method is extended to parallel mechanisms with planar n-bar reconfigurable platforms, spherical n-bar reconfigurable platforms, and other spatial reconfigurable platforms and lends itself to a way of studying a parallel mechanism with a reconfigurable platform.

References

1.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,” Recent Advances in Robot Kinematics,
Springer
,
Dordrecht, The Netherlands
, pp.
359
368
.
2.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
3.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.
4.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
.
5.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
),
121001
.
6.
Liu
,
H.
, and
Dai
,
J.
,
2003
, “
An Approach to Carton-Folding Trajectory Planning Using Dual Robotic Fingers
,”
Robot. Auton. Syst.
,
42
(
1
), pp.
47
63
.
7.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Robot.
,
1
(
4
),
041007
.
8.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
),
011001
.
9.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M. C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
10.
Palpacelli
,
M. C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2015
, “
Analysis and Design of a Reconfigurable 3-DOF Parallel Manipulator for Multimodal Tasks
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1975
1985
.
11.
Nayak
,
A.
,
Caro
,
S.
, and
Wenger
,
P.
2018
, “
A Dual Reconfigurable 4-rRUU Parallel Manipulator
,”
4th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR2018)
,
Delft, The Netherlands
,
June 20–22
.
12.
Moosavian
,
A.
, and
Xi
,
F.
,
2014
, “
Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,”
Mech. Mach. Theory
,
77
, pp.
92
110
.
13.
Grosch
,
P.
,
Di Gregorio
,
R.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator With Lockable Revolute Joints
,”
2010 IEEE International Conference on Robotics and Automation, ICRA 2010
,
Anchorage, Alaska
,
May 3–8
, pp.
4697
4702
.
14.
Flores-Mendez
,
J.
,
Schiøler
,
H.
,
Madsen
,
O.
, and
Bai
,
S.
2018
, “
Design of a Dynamically Reconfigurable 3T1R Parallel Kinematic Manipulator
,”
4th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR2018)
,
Delft, The Netherlands
,
June 20–22
.
15.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
),
062303
.
16.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.
17.
Srivatsan
,
R. A.
, and
Bandyopadhyay
,
S.
,
2013
, “
On the Position Kinematic Analysis of Mapaman: A Reconfigurable Three-Degrees-of-Freedom Spatial Parallel Manipulator
,”
Mech. Mach. Theory
,
62
, pp.
150
165
.
18.
Ding
,
X.
, and
Li
,
X.
,
2015
, “
Design of a Type of Deployable/Retractable Mechanism Using Friction Self-Locking Joint Units
,”
Mech. Mach. Theory
,
92
, pp.
273
288
.
19.
Sarabandi
,
S.
,
Grosch
,
P.
,
Porta
,
J. M.
, and
Thomas
,
F.
2018
, “
A Reconfigurable Asymmetric 3-UPU Parallel Robot
,”
4th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR2018)
,
Delft, The Netherlands
,
June 20–22
.
20.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
.
21.
Yi
,
B.
,
Na
,
H. Y.
,
Lee
,
J. H.
,
Hong
,
Y.
,
Oh
,
S.
,
Suh
,
I. H.
, and
Kim
,
W. K.
,
2002
, “
Design of a Parallel-Type Gripper Mechanism
,”
Int. J. Rob. Res.
,
21
(
7
), pp.
661
676
.
22.
Mohamed
,
M. G.
, and
Gosselin
,
C.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
277
287
.
23.
Nabat
,
V.
,
Rodriguez
,
M. d. l. O.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, Canada
,
Aug. 2–6
, pp.
553
558
.
24.
Hoevenaars
,
A. G.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2013
, “
Kinematic Design of Two Elementary 3DOF Parallel Manipulators With Configurable Platforms
,”
6th International Workshop on Computational Kinematics
,
Barcelona, Spain
,
May 12–15
, pp.
315
322
.
25.
Hoevenaars
,
A. G. L.
,
Gosselin
,
C.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2017
, “
A Systematic Approach for the Jacobian Analysis of Parallel Manipulators With Two End-Effectors
,”
Mech. Mach. Theory
,
109
, pp.
171
194
.
26.
Lambert
,
P.
,
Langen
,
H.
, and
Schmidt
,
R. M.
2010
, “
A Novel 5 DOF Fully Parallel Robot Combining 3T1R Motion and Grasping
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
,
Montreal, Canada
,
Aug. 15–18
, pp.
1123
1130
.
27.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Parallel Robots With Configurable Platforms: Fundamental Aspects of a New Class of Robotic Architectures
,”
IMechE J. Mech. Eng. Sci.
,
230
(
3
), pp.
463
472
.
28.
Lambert
,
P.
, and
Herder
,
J. L.
,
2013
, “
Self Dual Topology of Parallel Mechanisms With Configurable Platforms
,”
6th International Workshop on Computational Kinematics
,
Barcelona, Spain
,
May 12–15
, pp.
291
298
.
29.
Zeng
,
Q.
, and
Ehmann
,
K. F.
,
2014
, “
Design of Parallel Hybrid-Loop Manipulators With Kinematotropic Property and Deployability
,”
Mech. Mach. Theory
,
71
, pp.
1
26
.
30.
Sun
,
J.
,
Zhang
,
X.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2016
, “
Geometry and Kinematics for a Spherical-Base Integrated Parallel Mechanism
,”
Meccanica
,
51
(
7
), pp.
1607
1621
.
31.
Wu
,
G.
, and
Dong
,
H.
,
2017
, “
Kinematics of a 6-RUU Parallel Robots With Reconfigurable Platforms
,”
7th International Workshop on Computational Kinematics
,
Futuroscope-Poitiers, France
,
May 22–24
, pp.
331
339
.
32.
Haouas
,
W.
,
Dahmouche
,
R.
,
Le Fort-Piat
,
N.
, and
Laurent
,
G. J.
,
2016
, “
4-DOF Spherical Parallel Wrist With Embedded Grasping Capability for Minimally Invasive Surgery
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, Korea
,
Oct. 9–14
, pp.
2363
2368
.
33.
Haouas
,
W.
,
Dahmouche
,
R.
,
Le Fort-Piat
,
N.
, and
Laurent
,
G. J.
,
2018
, “
A New Seven Degrees-of-Freedom Parallel Robot With a Foldable Platform
,”
ASME J. Mech. Robot.
,
10
(
4
),
045001
.
34.
Song
,
Y.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comp. Integr. Manuf.
,
30
(
5
), pp.
508
516
.
35.
Dong
,
G.
,
Sun
,
T.
,
Song
,
Y.
,
Gao
,
H.
, and
Lian
,
B.
,
2016
, “
Mobility Analysis and Kinematic Synthesis of a Novel 4-DoF Parallel Manipulator
,”
Robotica
,
34
(
5
), pp.
1010
1025
.
36.
Huo
,
X.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
A Geometric Algebra Approach to Determine Motion/Constraint, Mobility and Singularity of Parallel Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
273
293
.
37.
Yi
,
B.-J.
,
Kim
,
S. M.
,
Kwak
,
H. K.
, and
Kim
,
W.
,
2013
, “
Multi-Task Oriented Design of an Asymmetric 3T1R Type 4-DOF Parallel Mechanism
,”
IMechE J. Mech. Eng. Sci.
,
227
(
10
), pp.
2236
2255
.
38.
Hong
,
M. B.
, and
Choi
,
Y. J.
,
2009
, “
Kinestatic Analysis of Nonsingular Lower Mobility Manipulators
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
938
942
.
39.
Coppola
,
G.
,
Zhang
,
D.
,
Liu
,
K.
, and
Gao
,
Z.
,
2013
, “
Design of Parallel Mechanisms for Flexible Manufacturing With Reconfigurable Dynamics
,”
ASME J. Mech. Des.
,
135
(
7
),
071011
.
40.
Kim
,
S. M.
,
Yi
,
B. J.
, and
Kim
,
W.
,
2013
, “
Forward Kinematic Singularity Avoiding Design of a Schönflies Motion Generator by Asymmetric Attachment of Subchains
,”
Int. J. Control Autom.
,
11
(
1
), pp.
116
126
.
41.
Kanner
,
O. Y.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2014
, “
The Design of Exactly Constrained Walking Robots
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
2983
2989
.
42.
de la Torre
,
H.
, and
Rodriguez-Leal
,
E.
,
2016
, “
Instantaneous Kinematics Analysis Via Screw-Theory of a Novel 3-CRC Parallel Mechanism
,”
Int. J. Adv. Robot. Syst.
,
13
(
3
),
128
.
43.
Coppola
,
G.
,
Zhang
,
D.
, and
Liu
,
K.
,
2014
, “
A New Class of Adaptive Parallel Robots
,”
ASME J. Mech. Robot.
,
6
(
4
),
041013
.
44.
Kang
,
L.
,
Kim
,
W.
,
Yi
,
B. J.
,
Kang
,
L.
,
Kim
,
W.
, and
Yi
,
B. J.
,
2017
, “
Modeling and Analysis of Parallel Mechanisms With Both Kinematic and Force Redundancies Via Screw Theory
,”
ASME J. Mech. Robot.
,
9
(
6
),
061007
.
45.
Gallardo-Alvarado
,
J.
,
Rodríguez-Castro
,
R.
, and
Delossantos-Lara
,
P. J.
,
2018
, “
Kinematics and Dynamics of a 4-PRUR Schönflies Parallel Manipulator by Means of Screw Theory and the Principle of Virtual Work
,”
Mech. Mach. Theory
,
122
, pp.
347
360
.
46.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2003
, “
A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems
,”
J. Robot. Syst.
,
20
(
7
), pp.
401
412
.
47.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
48.
Blyth
,
T. S.
,
1975
,
Set Theory and Abstract Algebra
,
Longman
,
London
.
49.
Dai
,
J. S.
,
1993
, “
Screw Image Space and Its Application to Robotic Grasping
,” Ph.D. dissertation,
University of Salford
,
Salford, UK
.
50.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing
, ISBN: 9787040334838.
You do not currently have access to this content.