Abstract

The computational efficiencies of traditional reliability methods, such as Monte Carlo (MC), are extremely low. There are also some shortcomings for surrogate model (SM)-based methods, e.g., the sample points of the quadratic polynomial (QP)-MC grow exponentially with the increases of random variables and the artificial neural network (ANN)-MC may exhibit overfitting with limited sample numbers, etc. However, the characteristic of support vector machine (SVM) is that it specifically fits for small samples and has strong learning and good generalization abilities so that it can obtain an optimal solution even with limited samples. In this case, a high-efficiency and high-accuracy dynamic reliability framework called as SVM-based classification extremum method (SVM-CEM) combining SVM classification theory with random probability model based on optimization idea is proposed, which is very suitable for the flexible mechanism (FM) that has few samples. First, an implicit limit state equation (LSE) of dynamic response and a reliability model with multiple failure modes for FM are established. The kernel function is introduced in building the model, the solution of optimal classification hyperplane is translated into a dual problem of convex quadratic programming optimization, which is regarded as the surrogate model of FM’s dynamic response extreme value (DREV). Then, this method is used to analyze the dynamic reliability of FM’s maximum angular acceleration (MAA). Finally, to reveal the validity of this method, SVM-CEM is compared with MC, QP-MC, and ANN-MC. The conclusion is that the computational efficiency of SVM-CEM is better than that of MC, QP-MC, and ANN-MC ensuring the computational accuracy. The proposed SVM-CEM in dynamic reliability analysis has important guiding significance for the application of FM’s practical engineering.

References

1.
Zhu
,
Z. W.
,
To
,
S.
, and
Zhou
,
X. Q.
,
2016
, “
Characterization of Spatial Parasitic Motions of Compliant Mechanisms Induced by Manufacturing Errors
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011018
. https://doi.org/10.1115/1.4030586
2.
Maschio
,
C.
, and
Schiozer
,
D. J.
,
2015
, “
A New Optimization Framework Using Genetic Algorithm and Artificial Neural Network to Reduce Uncertainties in Petroleum Reservoir Models
,”
Eng. Optim.
,
47
(
1
), pp.
72
86
. 10.1080/0305215X.2013.868453
3.
Alexandre
,
B. C.
,
Sebastian
,
J. V.
,
Arnaud
,
D.
,
2018
, “
The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
113
(
522
)
, pp.
855
867
.
4.
Cuchiero
,
C.
,
Keller-Ressel
,
M.
, and
Teichmann
,
J.
,
2012
, “
Polynomial Processes and Their Applications to Mathematical Finance
,”
Financ. Stoch.
,
16
(
4
), pp.
711
740
. 10.1007/s00780-012-0188-x
5.
Zheng
,
Z.
,
Chen
,
X.
,
Liu
,
C.
, and
Huang
,
K.
,
2016
, “
Using Support Vector Machine and Dynamic Parameter Encoding to Enhance Global Optimization
,”
Eng. Optim.
,
48
(
5
), pp.
851
867
. 10.1080/0305215X.2015.1057056
6.
Guo
,
Z. P.
, and
Deng
,
Z. M.
,
2019
, “
Interval Identification of Structural Parameters Using Interval Deviation Degree and Monte Carlo Simulation
,”
Int. J. Comput. Methods
,
16
(
7
), p.
1850103
.
7.
Lian
,
B.
,
Wang
,
X. V.
, and
Wang
,
L.
,
2019
, “
Static and Dynamic Optimization of a Pose Adjusting Mechanism Considering Parameter Changes During Construction
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
267
277
. 10.1016/j.rcim.2019.04.008
8.
Houthooft
,
R.
, and
De Turck
,
F.
,
2016
, “
Integrated Inference and Learning of Neural Factors in Structural Support Vector Machines
,”
Pattern Recognit
,
59
, pp.
292
301
. 10.1016/j.patcog.2016.03.014
9.
Xu
,
Q. H.
,
Geng
,
S.
, and
Shi
,
J.
,
2012
, “
Aero-Engine Fault Diagnosis Applying New Fast Support Vector Algorithm
,”
J. Aerosp. Power
,
27
(
7
), pp.
1604
1612
.
10.
Leigh
,
S.
,
Wang
,
Z.
, and
Clausi
,
D. A.
,
2014
, “
Automated Ice-Water Classification Using Dual Polarization SAR Satellite Imagery
,”
IEEE Trans. Geosci. Remote Sens.
,
52
(
9
), pp.
5529
5539
. 10.1109/TGRS.2013.2290231
11.
Martins
,
J.
,
Oliveira
,
L. S.
,
Nisgoski
,
S.
, and
Sabourin
,
R.
,
2013
, “
A Database for Automatic Classification of Forest Species
,”
Mach. Vision Appl.
,
24
(
3
), pp.
567
578
. 10.1007/s00138-012-0417-5
12.
Fleury
,
A.
,
Vacher
,
M.
, and
Noury
,
N.
,
2010
, “
SVM-Based Multimodal Classification of Activities of Daily Living in Health Smart Homes: Sensors, Algorithms, and First Experimental Results
,”
IEEE Trans. Inf. Technol. Biomed.
,
14
(
2
), pp.
274
283
. 10.1109/TITB.2009.2037317
13.
Bajaj
,
V.
, and
Pachori
,
R. B.
,
2012
, “
Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition
,”
IEEE Trans. Inf. Technol. Biomed.
,
16
(
6
), pp.
1135
1142
. 10.1109/TITB.2011.2181403
14.
Waske
,
B.
,
van der Linden
,
S.
,
Benediktsson
,
J. A.
,
Rabe
,
A.
, and
Hostert
,
P.
,
2010
, “
Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data
,”
IEEE Trans. Geosci. Remote Sens.
,
48
(
7
), pp.
2880
2889
. 10.1109/TGRS.2010.2041784
15.
Cholette
,
M. E.
,
Borghesani
,
P.
,
Di Gialleonardo
,
E.
, and
Braghin
,
F.
,
2017
, “
Using Support Vector Machines for the Computationally Efficient Identification of Acceptable Design Parameters in Computer-Aided Engineering Applications
,”
Expert Syst. Appl.
,
81
, pp.
39
52
. 10.1016/j.eswa.2017.03.050
16.
Zhao
,
H. B.
,
Li
,
S. J.
, and
Ru
,
Z. L.
,
2017
, “
Adaptive Reliability Analysis Based on a Support Vector Machine and Its Application to Rock Engineering
,”
Appl. Math. Modell.
,
44
, pp.
508
522
. 10.1016/j.apm.2017.02.020
17.
Qu
,
J. X.
,
Zhang
,
Z. S.
,
Luo
,
X.
,
Li
,
B.
, and
Wen
,
J. P.
,
2016
, “
A Novel Method to Aging State Recognition of Viscoelastic Sandwich Structures
,”
Steel Compos. Struct.
,
21
(
6
), pp.
1183
1210
. 10.12989/scs.2016.21.6.1183
18.
Lins
,
I. D.
,
Moura
,
M. D. C.
,
Zio
,
E.
, and
Droguett
,
E. L.
,
2012
, “
A Particle Swarm-Optimized Support Vector Machine for Reliability Prediction
,”
Qual. Reliab. Eng. Int.
,
28
(
2
), pp.
141
158
. 10.1002/qre.1221
19.
Zhou
,
M. C.
,
Zhao
,
Q.
,
Chen
,
Y. R.
, and
Shao
,
Y. M.
,
2018
, “
Carbon Content Measurement of BOF by Radiation Spectrum Based on Support Vector Machine Regression
,”
Spectrosc. Spectral Anal.
,
38
(
6
), pp.
1804
1808
.
20.
Chen
,
Y.
,
Luo
,
Y.
,
Huang
,
W.
,
Hu
,
D.
,
Zheng
,
R.-Q.
,
Cong
,
S.-Z.
,
Meng
,
F.-K.
,
Yang
,
H.
,
Lin
,
H.-J.
,
Sun
,
Y.
,
Wang
,
X.-Y.
,
Wu
,
T.
,
Ren
,
J.
,
Pei
,
S.-F.
,
Zheng
,
Y.
,
He
,
Y.
,
Hu
,
Y.
,
Yang
,
N.
, and
Yan
,
H.
2017
, “
Machine-Learning-Based Classification of Real-Time Tissue Elastography for Hepatic Fibrosis in Patients With Chronic Hepatitis B
,”
Comput. Biol. Med.
,
89
, pp.
18
23
. 10.1016/j.compbiomed.2017.07.012
21.
Yang
,
X. W.
,
Zhang
,
G. Q.
,
Lu
,
J.
, and
Ma
,
J.
,
2011
, “
A Kernel Fuzzy C-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises
,”
IEEE Trans. Fuzzy Syst.
,
19
(
1
), pp.
105
115
. 10.1109/TFUZZ.2010.2087382
22.
Wang
,
Y.
, and
Wang
,
D. L.
,
2013
, “
Towards Scaling Up Classification-Based Speech Separation
,”
IEEE Trans. Audio Speech Lang. Process.
,
21
(
7
), pp.
1381
1390
. 10.1109/TASL.2013.2250961
23.
Khan
,
N. M.
,
Ksantini
,
R.
,
Ahmad
,
I. S.
, and
Boufama
,
B.
,
2012
, “
A Novel SVM Plus NDA Model for Classification With an Application to Face Recognition
,”
Pattern Recognit.
,
45
(
1
), pp.
66
79
. 10.1016/j.patcog.2011.05.004
24.
Tang
,
X. L.
,
Zhuang
,
L.
,
Cai
,
J.
, and
Li
,
C. B.
,
2010
, “
Multi-Fault Classification Based on Support Vector Machine Trained by Chaos Particle Swarm Optimization
,”
Knowl. Based Syst.
,
23
(
5
), pp.
486
490
. 10.1016/j.knosys.2010.01.004
25.
Moustakidis
,
S.
,
Mallinis
,
G.
,
Koutsias
,
N.
,
Theocharis
,
J. B.
, and
Petridis
,
V.
,
2012
, “
SVM-Based Fuzzy Decision Trees for Classification of High Spatial Resolution Remote Sensing Images
,”
IEEE Trans. Geosci. Remote Sens.
,
50
(
1
), pp.
149
169
. 10.1109/TGRS.2011.2159726
26.
Yu
,
L.
,
Yao
,
X.
,
Wang
,
S. Y.
, and
Lai
,
K. K.
,
2011
, “
Credit Risk Evaluation Using a Weighted Least Squares SVM Classifier With Design of Experiment for Parameter Selection
,”
Expert Syst. Appl.
,
38
(
12
), pp.
15392
15399
. 10.1016/j.eswa.2011.06.023
27.
Sarafrazi
,
S.
, and
Nezamabadi-pour
,
H.
,
2013
, “
Facing the Classification of Binary Problems With a GSA-SVM Hybrid System
,”
Math. Comput. Modell.
,
57
(
1–2
), pp.
270
278
. 10.1016/j.mcm.2011.06.048
28.
Geebelen
,
D.
,
Suykens
,
J. A. K.
, and
Vandewalle
,
J.
,
2012
, “
Reducing the Number of Support Vectors of SVM Classifiers Using the Smoothed Separable Case Approximation
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
23
(
4
), pp.
682
688
. 10.1109/TNNLS.2012.2186314
29.
Dai
,
H. Z.
, and
Cao
,
Z. G.
,
2017
, “
A Wavelet Support Vector Machine-Based Neural Network Metamodel for Structural Reliability Assessment
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
32
(
4
), pp.
344
357
. 10.1111/mice.12257
30.
Alibrandi
,
U.
,
Alani
,
A. M.
, and
Ricciardi
,
G.
,
2015
, “
A New Sampling Strategy for SVM-Based Response Surface for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
41
, pp.
1
12
. 10.1016/j.probengmech.2015.04.001
31.
Jiang
,
S. F.
,
Fu
,
D. B.
, and
Wu
,
S. Y.
,
2014
, “
Structural Reliability Assessment by Integrating Sensitivity Analysis and Support Vector Machine
,”
Math. Probl. Eng.
, p.
586191
.
32.
Tan
,
X. H.
,
Bi
,
W. H.
,
Hou
,
X. L.
, and
Wang
,
W.
,
2011
, “
Reliability Analysis Using Radial Basis Function Networks and Support Vector Machines
,”
Comput. Geotech.
,
38
(
2
), pp.
178
186
. 10.1016/j.compgeo.2010.11.002
33.
Khatibinia
,
M.
,
Fadaee
,
M. J.
,
Salajegheh
,
J.
, and
Salajegheh
,
E.
,
2013
, “
Seismic Reliability Assessment of RC Structures Including Soil-Structure Interaction Using Wavelet Weighted Least Squares Support Vector Machine
,”
Reliab. Eng. Syst. Saf.
,
110
, pp.
22
33
. 10.1016/j.ress.2012.09.006
34.
Basudhar
,
A.
, and
Missoum
,
S.
,
2010
, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries
,”
Struct. Multidiscipl. Optim.
,
42
(
4
), pp.
517
529
. 10.1007/s00158-010-0511-0
35.
Liu
,
X.
,
Wu
,
Y. Z.
,
Wang
,
B. X.
,
Ding
,
J. W.
, and
Jie
,
H. X.
,
2017
, “
An Adaptive Local Range Sampling Method for Reliability-Based Design Optimization Using Support Vector Machine and Kriging Model
,”
Struct. Multidiscipl. Optim.
,
55
(
6
), pp.
2285
2304
. 10.1007/s00158-016-1641-9
36.
Kang
,
F.
,
Xu
,
Q.
, and
Li
,
J. J.
,
2016
, “
Slope Reliability Analysis Using Surrogate Models via New Support Vector Machines With Swarm Intelligence
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6105
6120
. 10.1016/j.apm.2016.01.050
37.
Wang
,
Y.
,
Yu
,
X. Q.
, and
Du
,
X. P.
,
2015
, “
Improved Reliability-Based Optimization With Support Vector Machines and Its Application in Aircraft Wing Design
,”
Math. Probl. Eng.
, p.
569016
.
38.
Behloul
,
F.
,
Lelieveldt
,
B. P.
,
Boudraa
,
A.
,
Reiber
,
J. H. C.
,
2002
, “
Optimal Design of Radial Basis Function Neural Networks for Fuzzy-Rule Extraction in High Dimensional Data
,”
Pattern Recognit.
,
35
(
3
), pp.
659
675
. 10.1016/S0031-3203(01)00033-4
39.
Pelckmans
,
K.
,
Suykens
,
J. A. K.
, and
Van Gestel
,
T.
,
2003
, “
LS-SVM Toolbox User’s Guide
,”
Report 02-145, 2003
ESAT-SISTA Leuven
,
Belgium
.
40.
Yu
,
L.
,
Shi
,
F.
,
Wang
,
H.
, and
Hu
,
F.
,
2015
,
MATLAB 30 Cases Studies of Intelligence Algorithm (Version 2)
,
Beijing University of Aeronautics and Astronautics Press
,
Beijing, China
.
You do not currently have access to this content.