Abstract

This paper proposes a novel performance index, which is called static actuation force sensitivity (SAFS), to investigate the response of the actuation forces when the amplitude of the suffered load of the end-effector has a change. Smaller SAFS can protect the actuations, and the load is mainly suffered by the structural constraints. This work starts with the construction of the unified forward Jacobian matrix of both serial and parallel mechanisms by screw theory. Then, with the forward Jacobian matrix, the inverse static equation is established. SAFS is thus introduced by the “partial differential” operation on the inverse static equation. SAFS is only related to the position of the whole mechanism and the direction of the suffered load, but not related to the detailed value of the amplitude of the load and the detailed value of the actuation forces; thus, SAFS can reveal the essence of static force capacities of the mechanisms. The example mechanism (namely, the 3revolute-prismatic-spherical (RPS) parallel mechanism) is used to illustrate the distribution of SAFS both over the workspace and at a certain pose. The analysis method of SAFS and the proposed index are expected to be applied to the pose optimization in the motion planning of the mechanisms to protect the actuations.

References

1.
Buttolo
,
P.
, and
Hannaford
,
B.
,
1995
, “
Advantages of Actuation Redundancy for the Design of Haptic Displays
,”
Proc. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition
,
Nov. 12, 1995–Nov. 17
,
ASME
,
New York
, pp.
623
630
.
2.
Kim
,
H. S.
, and
Choi
,
Y. J.
,
1999
, “
The Kinetostatic Capability Analysis of Robotic Manipulators
,”
Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots With High Intelligence and Emotional Quotients (Cat. No. 99CH36289)
,
Kyongju, South Korea
,
Oct. 17–21
,
IEEE
, pp.
1241
1246
.
3.
Meng
,
L.
,
Tian
,
H.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Dynamic Formulation and Performance Comparison of the 3DOF Modules of Two Reconfigurable PKM—the Tricept and the TriVariant
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1129
1136
. 10.1115/1.1992511
4.
Merlet
,
J. P.
,
1998
, “
Efficient Estimation of the Extremal Articular Forces of a Parallel Manipulator in a Translation Workspace
,”
IEEE International Conference on Robot
,
Leuven, Belgium
,
May 16–18
, pp.
1982
1987
.
5.
Merlet
,
J. P.
,
2002
,
Parallel Robots
,
Springer
,
Berlin, Germany
.
6.
Gallardo
,
J.
,
Rico
,
J. M.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mac. Theory
,
38
(
11
), pp.
1113
1131
. 10.1016/S0094-114X(03)00054-5
7.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
. 10.1016/S0094-114X(97)00118-3
8.
Marco
,
C.
,
2006
,
Fundamentals of Mechanics of Robotic Manipulation
,
Springer
,
Berlin, Germany
.
9.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues
,”
Mech. Mach. Theory
,
33
(
6
), pp.
727
742
. 10.1016/S0094-114X(97)00094-3
10.
Russo
,
A.
,
Sinatra
,
R.
, and
Xi
,
F.
,
2005
, “
Static Balancing of Parallel Robots
,”
Mech. Mach. Theory
,
40
(
2
), pp.
191
202
. 10.1016/j.mechmachtheory.2004.06.011
11.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
. 10.1016/j.mechmachtheory.2004.10.005
12.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2001
, “
Kinetostatic Modeling of N-DOF Parallel Mechanisms With a Passive Constraining Leg and Prismatic Actuators
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
375
381
. 10.1115/1.1370976
13.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Modeling of Parallel Mechanisms With a Passive Constraining Leg and Revolute Actuators
,”
Mech. Mach. Theory
,
37
(
6
), pp.
599
617
. 10.1016/S0094-114X(02)00011-3
14.
Lu
,
Y.
,
Shi
,
Y.
, and
Hu
,
B.
,
2007
, “
A CAD Variation Geometric Approach of Solving Active/Constrained Forces of Some Parallel Manipulators with SPR-Type Active Legs
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007
,
LasVegas, NV
,
Sept. 4–7
, Vol.
8
,
Parts A and B
, pp.
839
845
.
15.
Lu
,
Y.
,
2007
, “
Using Virtual Work Theory and CAD Functionalities for Solving Active Force and Passive Force of Spatial Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
7
), pp.
839
858
. 10.1016/j.mechmachtheory.2006.06.011
16.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1991
, “
Optimization of Dynamic Forces in Mechanical Hands
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
167
173
. 10.1115/1.2912765
17.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1992
, “
Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,”
IEEE Trans. Robot. Autom.
,
8
(
4
), pp.
439
450
. 10.1109/70.149943
18.
Zhao
,
Y.
,
Liu
,
J. F.
, and
Huang
,
Z.
,
2011
, “
A Force Analysis of a 3-RPS Parallel Mechanism by Using Screw Theory
,”
Robotica
,
29
(
7
), pp.
959
965
. 10.1017/S0263574711000129
19.
Firmani
,
F.
, and
Podhorodeski
,
R. P.
,
2004
, “
Force-Unconstrained Poses for a Redundantly-Actuated Planar Parallel Manipulator
,”
Mech. Mach. Theory
,
39
(
5
), pp.
459
476
. 10.1016/j.mechmachtheory.2003.11.002
20.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
. 10.1115/1.1469549
21.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
. 10.1016/j.mechmachtheory.2017.11.029
22.
Guo
,
Y. J.
,
Dong
,
H. Y.
, and
Ke
,
Y. L.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Robot Cim-Int. Manuf.
,
35
, pp.
69
76
. 10.1016/j.rcim.2015.02.006
23.
Vu
,
L. N.
, and
Kuo
,
C. H.
,
2019
, “
An Analytical Stiffness Method for Spring-Articulated Planar Serial or Quasi-Serial Manipulators Under Gravity and an Arbitrary Load
,”
Mech. Mach. Theory
,
137
, pp.
108
126
. 10.1016/j.mechmachtheory.2019.03.015
24.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
. 10.1115/1.1901708
25.
Lee
,
K. M.
, and
Shah
,
D.
,
2002
, “
Kinematic Analysis of a Three Degrees of Freedom in-Parallel Actuated Manipulator
,”
IEEE J. Robot. Autom.
,
4
(
3
), pp.
354
360
. 10.1109/56.796
26.
Yu
,
L.
,
Zhang
,
L.
,
Zhang
,
N.
,
Yang
,
S.
, and
Wang
,
D.
,
2010
, “
Kinematics Simulation and Analysis of 3-RPS Parallel Robot on SimMechanics
,”
Proceedings of 2010 IEEE International Conference on Information and Automation, ICIA 2010
,
Harbin, China
,
June 20–23
,
IEEE Computer Society
, pp.
2363
2367
.
You do not currently have access to this content.