Abstract

This article presents a novel design of a multisegment shape morphing mechanism that combines a lockable reconfigurable variable geometry truss manipulator (VGTM) with an active parallel compliant mechanism. The structure of the VGTM is in a parallel-serial structure, and its hyper-redundant degree-of-freedom (DOF) can be fully controlled by using two active flexible panels and some lockable joints. This mechanism is suitable for aerospace applications that require light and compact structure with high load-carrying ability as well as achieve multiple DOFs for large-scale shape deformation. To make shape morphing process simple and efficient, the mobility and topological configuration of the mechanism are analyzed first. Then, a control strategy combining the approximate motion mode and the exact motion mode is proposed. The kinematic models for different motion modes are established and solved analytically. It has been found that, under the exact motion mode, two approaches could be realized for the pose control under external loads for each segment. The one with the shorter moving path is selected in this article. Finally, a prototype was constructed to demonstrate the feasibility of this structure and to verify the proposed kinematic model.

References

1.
Moosavian
,
A.
,
Xi
,
F.
, and
Hashemi
,
S. M.
,
2013
, “
Design and Motion Control of Fully Variable Morphing Wings
,”
J. Aircraft
,
50
(
4
), pp.
1189
1201
. 10.2514/1.C032127
2.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
. 10.1115/1.4007449
3.
Hall
,
P. S. G.
,
Kelly
,
P.
,
Ebrahimi
,
J.
,
Hamid
,
E.
,
Ghanem
,
M. R.
, and
Herraiz-Martinez
,
F.
,
2009
, “
Reconfigurable Antenna Challenges for Future Radio Systems
,”
Proceedings of the 2009 3rd European Conference on Antennas and Propagation
,
Berlin, Germany
,
Mar. 23–27
, pp.
949
955
.
4.
Morales
,
R.
,
Feliu
,
V.
, and
González
,
A.
,
2010
, “
Optimized Obstacle Avoidance Trajectory Generation for a Reconfigurable Staircase Climbing Wheelchair
,”
Rob. Autonomous Systems
,
58
(
1
), pp.
97
114
. 10.1016/j.robot.2009.07.020
5.
Wagg
,
D.
,
Bond
,
I.
,
Weaver
,
P.
, and
Friswell
,
M.
,
2008
,
Adaptive Structures: Engineering Applications
,
John Wiley & Sons
,
NY
, pp.
89
135
.
6.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
. 10.1002/we.531
7.
Yu
,
A.
,
Xi
,
F. J.
, and
Moosavian
,
A.
,
2017
, “
A Shape-Morphing Mechanism With Sliding Panels
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041001
. 10.1115/1.4036221
8.
Funke
,
L. W.
,
Schmiedeler
,
J. P.
, and
Zhao
,
K.
,
2015
, “
Design of Planar Multi-Degree-of-Freedom Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011007
. 10.1115/1.4029289
9.
Wang
,
W.
,
Xi
,
F.
,
Tian
,
Y.
,
Zhao
,
Y.
, and
Li
,
Y.
,
2020
, “
Modeling and Analysis of a Planar Soft Panel Continuum Mechanism
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
044503
. 10.1115/1.4046029
10.
Alfattani
,
R.
, and
Lusk
,
C.
,
2018
, “
Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
051003
.
11.
Kota
,
S.
,
Hetrick
,
J. A.
,
Osborn
,
R.
,
Paul
,
D.
,
Pendleton
,
E.
,
Flick
,
P.
, and
Tilmann
,
C.
, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Proceedings of the Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies
,
San Diego, CA
,
Mar. 2–6
, pp.
24
33
.
12.
Tian
,
Y.
,
Luan
,
M.
,
Gao
,
X.
,
Wang
,
W.
, and
Li
,
L.
,
2016
, “
Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods
,”
Math. Problems Eng.
,
2016
(
PT. 11
), pp.
1
7
. 10.1155/2016/6984194
13.
Cramer
,
N. B.
,
Cellucci
,
D. W.
,
Formoso
,
O. B.
,
Gregg
,
C. E.
,
Jenett
,
B. E.
,
Kim
,
J. H.
,
Lendraitis
,
M.
,
Swei
,
S. S.
,
Trinh
,
G. T.
,
Trinh
,
K. V.
, and
Cheung
,
K. C.
,
2019
, “
Elastic Shape Morphing of Ultralight Structures by Programmable Assembly
,”
Smart Mater. Struct.
,
28
(
5
), p.
055006
. 10.1088/1361-665X/ab0ea2
14.
Wang
,
J.
,
Zhao
,
Y.
,
Xi
,
F.
, and
Tian
,
Y.
,
2020
, “
Design and Analysis of a Configuration-Based Lengthwise Morphing Structure
,”
Mech. Mach. Theory
,
147
(
1
), p.
103767
. 10.1016/j.mechmachtheory.2019.103767
15.
Xi
,
F.
,
Wang
,
J.
,
Zhao
,
Y.
, and
Tian
,
Y.
,
2020
, “
Two Actuation Methods for a Complete Morphing System
,”
The 4th International Workshop On Fundamental Issues, Applications and Future Research Directions for Parallel Mechanisms/Manipulators/Machines
,
Belfast, UK
,
June 24–27
, pp.
1
8
.
16.
Dai
,
J. S.
, and
Ding
,
X.
,
2006
, “
Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
755
764
. 10.1115/1.2202141
17.
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Elastic Stability of Cosserat Rods and Parallel Continuum Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
718
733
. 10.1109/TRO.2017.2664879
18.
Yang
,
C.
,
Geng
,
S.
,
Walker
,
I.
,
Branson
,
D. T.
,
Liu
,
J.
,
Dai
,
J. S.
, and
Kang
,
R.
, “
Geometric Constraint-Based Modeling and Analysis of a Novel Continuum Robot With Shape Memory Alloy Initiated Variable Stiffness
,”
Int. J. Rob. Res.
, 10.1177/0278364920913929.
19.
Cianchetti
,
M.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Nanayakkara
,
T.
,
Althoefer
,
K.
,
Dasgupta
,
P.
, and
Menciassi
,
A.
,
2014
, “
Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach
,”
Soft Rob.
,
1
(
2
), pp.
122
131
. 10.1089/soro.2014.0001
20.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2014
, “
A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
382
395
. 10.1109/TRO.2013.2287975
21.
Bajo
,
A.
, and
Simaan
,
N.
,
2016
, “
Hybrid Motion/Force Control of Multi-Backbone Continuum Robots
,”
Int. J. Rob. Res.
,
35
(
4
), pp.
422
434
. 10.1177/0278364915584806
22.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2011
, “
Stiffness Control of Surgical Continuum Manipulators
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
334
345
. 10.1109/TRO.2011.2105410
23.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
935
949
. 10.1109/TRO.2014.2314777
24.
Walker
,
I. D.
,
2013
, “
Continuous Backbone “Continuum” Robot Manipulators
,”
ISRN Rob.
,
2013
(
1
), pp.
1
19
. 10.5402/2013/726506
25.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
. 10.1115/1.4000519
26.
Chen
,
X.
,
Yao
,
J.
,
Li
,
T.
,
Li
,
H.
,
Zhou
,
P.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2020
, “
Development of a Multi-Cable-Driven Continuum Robot Controlled by Parallel Platforms
,”
ASME J. Mech. Rob.
,
1
(
1
), pp.
1
11
. 10.1115/1.4048967
27.
Aghili
,
F.
, and
Parsa
,
K.
,
2006
, “
Design of a Reconfigurable Space Robot with Lockable Telescopic Joints
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
4608
4614
.
28.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
The Clarendon Press
,
New York
.
29.
Finistauri
,
A. D.
,
XI
,
F.
, and
Walsh
,
P.
,
2012
, “
Discretization Method for the Development of a Modular Morphing Wing
,”
J. Aircraft
,
49
(
1
), pp.
116
125
. 10.2514/1.C031382
You do not currently have access to this content.