Abstract

Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree. This system enables load sharing that is robust to position deviations between the two arms. The whiffletree utilizes pneumatic tool changers which enable autonomous attachment/detachment. We outline the overall design of a whiffletree for dual-arm manipulation. We also illustrate how this type of mechanical intelligence can greatly simplify cooperative control. Lastly, we use physical experiments to illustrate enhanced load capacity. Specifically, we show how two UR5 manipulators can re-position a 7 kg load. This load would exceed the weight capacity of a single arm, and we show that the average forces on each arm remain below this level and are relatively evenly distributed.

References

1.
Edsinger
,
A.
, and
Kemp
,
C. C.
,
2006
, “
Manipulation in Human Environments
,”
2006 6th IEEE-RAS International Conference on Humanoid Robots
,
Genova, Italy
,
Dec. 4–6
, IEEE, pp.
102
109
.
2.
Kruse
,
D.
,
Radke
,
R. J.
, and
Wen
,
J. T.
,
2015
, “
Collaborative Human–Robot Manipulation of Highly Deformable Materials
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 25–30
, IEEE, pp.
3782
3787
.
3.
Adorno
,
B. V.
,
2011
, “
Two-Arm Manipulation: From Manipulators to Enhanced Human–Robot Collaboration
,” Ph.D. thesis,
Université Montpellier II – Sciences et Techniques du Languedoc
,
Montpellier, France
.
4.
Zheng
,
Y.
, and
Luh
,
J.
,
1985
, “
Control of Two Coordinated Robots in Motion
,”
24th IEEE Conference on Decision and Control
,
Fort Lauderdale, FL
,
Dec. 11–13
, IEEE, pp.
1761
1766
.
5.
Zheng
,
Y.
, and
Luh
,
J.
,
1986
, “
Joint Torques for Control of Two Coordinated Moving Robots
,”
Proceedings of 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
, IEEE, pp.
1375
1380
.
6.
Kim
,
K.I.
, and
Zheng
,
Y. F.
,
1991
, “
Unknown Load Distribution of Two Industrial Robots
,”
Proceedings. 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
.
7.
Yan
,
L.
,
Mu
,
Z.
,
Xu
,
W.
, and
Yang
,
B.
,
2016
, “
Coordinated Compliance Control of Dual-Arm Robot for Payload Manipulation: Master-Slave and Shared Force Control
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
2697
2702
.
8.
Kumar
,
M.
, and
Garg
,
D. P.
,
2004
, “
Sensor-Based Estimation and Control of Forces and Moments in Multiple Cooperative Robots
,”
J. Dyn. Sys. Meas. Control
,
126
(
2
), pp.
276
283
. 10.1115/1.1766029
9.
Unseren
,
M. A.
, and
Koivo
,
A. J.
,
1989
, “
Reduced Order Model and Decoupled Control Architecture for Two Manipulators Holding an Object
,”
Proceedings of the 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, IEEE, pp.
1240
1245
.
10.
Kumar
,
V.
,
Yun
,
X.
,
Paljug
,
E.
, and
Sarkar
,
N.
,
1991
, “
Control of Contact Conditions for Manipulation With Multiple Robotic Systems
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, IEEE, pp.
170
175
.
11.
Hayati
,
S.
,
1986
, “
Hybrid Position/Force Control of Multi-Arm Cooperating Robots
,”
Proceedings of the 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
, IEEE, pp.
82
89
.
12.
Uchiyama
,
M.
, and
Dauchez
,
P.
,
1988
, “
A Symmetric Hybrid Position/Force Control Scheme for the Coordination of Two Robots
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
.
13.
Yun
,
X.
,
1989
, “
Nonlinear Feedback Control of Two Manipulators in Presence of Environmental Constraints
,”
Proceedings of the 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, IEEE, pp.
1252
1257
.
14.
Kopf
,
C. D.
, and
Yabuta
,
T.
,
1988
, “
Experimental Comparison of Master/Slave and Hybrid Two Arm Position/Force Control
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, IEEE, pp.
1633
1637
.
15.
Liu
,
Y.-H.
,
Arimoto
,
S.
, and
Ogasawara
,
T.
,
1996
, “
Decentralized Cooperation Control: Non-communication Object Handling
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
3
, IEEE, pp.
2414
2419
.
16.
Tarn
,
T.
,
Bejczy
,
A.
, and
Yun
,
X.
,
1986
, “
Coordinated Control of Two Robot Arms
,”
Proceedings of 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
, IEEE, pp.
1193
1202
.
17.
Wen
,
J. T.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Motion and Force Control of Multiple Robotic Manipulators
,”
Automatica
,
28
(
4
), pp.
729
743
. 10.1016/0005-1098(92)90033-C
18.
Kosuge
,
K.
,
Taguchi
,
D.
,
Fukuda
,
T.
,
Sakai
,
M.
, and
Kanitani
,
K.
,
1995
, “
Decentralized Control of Robots for Dynamic Coordination
,”
Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Apr. 5–9
, Vol.
1
, IEEE, pp.
76
81
.
19.
Hsu
,
P.
,
1989
, “
Control of Multimanipulator Systems-Trajectory Tracking, Load Distribution, Internal Force Control, and Decentralized Architecture
,”
Proceedings of the 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, IEEE, pp.
1234
1239
.
20.
Xi
,
N.
,
Tarn
,
T.-J.
, and
Bejczy
,
A. K.
,
1996
, “
Intelligent Planning and Control for Multirobot Coordination: An Event-Based Approach
,”
IEEE Trans. Rob. Autom.
,
12
(
3
), pp.
439
452
. 10.1109/70.499825
21.
Sun
,
D.
, and
Mills
,
J. K.
,
2002
, “
Manipulating Rigid Payloads With Multiple Robots Using Compliant Grippers
,”
IEEE/ASME Trans. Mech.
,
7
(
1
), pp.
23
34
. 10.1109/3516.990884
22.
Zhang
,
J.
,
Lumia
,
R.
,
Starr
,
G.
, and
Wood
,
J.
,
2004
, “
Sharing Inertia Load Between Multiple Robots With Active Compliant Grippers Using Trajectory Pre-shaping
,”
Proceedings of the IEEE International Conference on Robotics and Automation 2004 (ICRA’04)
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
3
, IEEE, pp.
2574
2581
.
23.
Arimoto
,
S.
,
Miyazaki
,
F.
, and
Kawamura
,
S.
,
1987
, “
Cooperative Motion Control of Multiple Robot Arms or Fingers
,”
Proceedings of the 1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31–Apr. 3
, Vol.
4
, IEEE,pp.
1407
1412
.
24.
Osumi
,
H.
, and
Arai
,
T.
,
1994
, “
Cooperative Control Between Two Position-Controlled Manipulators
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, IEEE, pp.
1509
1514
.
25.
de Nachtegaal
,
J.
,
1983
, “
Hoisting Yoke
,”
US Patent 4,394,041
.
26.
Seyff
,
R. M.
,
1970
, “
Three-Crane Lifting Beam
,”
US Patent 3,513,987
.
27.
Meisinger
,
E.
, and
Steiner
,
H.
,
1994
, “
Hoisting Gear on the Trolley of a Container Crane
,”
US Patent 5,314,262
.
28.
Anderson
,
C.
,
1989
, “
Animal Lift Frame
,”
US Patent 4,831,967
.
29.
Xu
,
K.
,
Liu
,
H.
,
Zhang
,
Z.
, and
Zhu
,
X.
,
2018
, “
Wrist-Powered Partial Hand Prosthesis Using a Continuum Whiffle Tree Mechanism: A Case Study
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
3
), pp.
609
618
. 10.1109/TNSRE.2018.2800162
30.
Paquette
,
J.
,
Van Dam
,
J.
, and
Hughes
,
S.
,
2007
, “
Structural Testing of 9m Carbon Fiber Wind Turbine Research Blades
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, p.
816
.
31.
Ruotolo
,
W.
,
Roig
,
F. S.
, and
Cutkosky
,
M. R.
,
2019
, “
Load-Sharing in Soft and Spiny Paws for a Large Climbing Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1439
1446
. 10.1109/LRA.2019.2897002
32.
Kim
,
R.
,
Ahlin
,
K.
,
Marcum
,
M.
,
Balakirsky
,
S.
, and
Mazumdar
,
A.
, “
Enhancing Payload Capacity With Dual-Arm Manipulation and Reconfigurable Mechanical Intelligence
,” http://youtu.be/PxlWbcDmUJg, Accessed June 16, 2020.
33.
Barraquand
,
J.
,
Langlois
,
B.
, and
Latombe
,
J.
,
1992
, “
Numerical Potential Field Techniques for Robot Path Planning
,”
IEEE Trans. Syst. Man Cybern.
,
22
(
2
), pp.
224
241
. 10.1109/21.148426
34.
Khatib
,
O.
,
1986
, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,”
Autonomous Robot Vehicles
,
Springer
,
New York, NY
, pp.
396
404
.
35.
Koren
,
Y.
, and
Borenstein
,
J.
,
1991
, “
Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation
,”
Proceedings. 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, Vol.
2
, pp.
1398
1404
.
36.
Liegeois
,
A.
, et al
,
1977
, “
Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
,
7
(
12
), pp.
868
871
. 10.1109/TSMC.1977.4309644
37.
Buss
,
S. R.
,
2004
, “
Introduction to Inverse Kinematics With Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,”
IEEE J. Rob. Autom.
,
17
(
1–19
), p.
16
.
38.
Novakovic
,
Z. R.
, and
Nemec
,
B.
,
1990
, “
A Solution of the Inverse Kinematics Problem Using the Sliding Mode
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
247
252
. 10.1109/70.54740
39.
Ahlin
,
K. J.
,
Sadegh
,
N.
, and
Hu
,
A. -P.
,
2018
, “
The Secant Method: Global Trajectory Planning With Variable Radius, Solid Obstacles
,”
Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, Vol.
51913
, American Society of Mechanical Engineers, p. V003T32A015.
You do not currently have access to this content.