Abstract

The local analysis is an established approach to the study of singularities and mobility of linkages. The key result of such analyses is a local picture of the finite motion through a configuration. This reveals the finite mobility at that point and the tangents to smooth motion curves. It does, however, not immediately allow to distinguish between motion branches that do not intersect transversally (which is a rather uncommon situation that has only recently been discussed in the literature). The mathematical framework for such a local analysis is the kinematic tangent cone. It is shown in this paper that the constructive definition of the kinematic tangent cone already involves all information necessary to distinguish different motion branches. A computational method is derived by amending the algorithmic framework reported in previous publications.

References

1.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
, and
V.
Parenti-Castelli
, eds.,
Kluwer
,
Dordrecht
, pp.
359
368
.
2.
Kong
,
X.
,
2018
, “
A Variable-Dof Single-loop 7R Spatial Mechanism With Five Motion Modes
,”
Mech. Mach. Theory.
,
120
, pp.
239
249
. 10.1016/j.mechmachtheory.2017.10.005
3.
Walter
,
D. R.
, and
Husty
,
M. L.
, “
On Implicitization of Kinematic Constraint Equations
,”
Int. Conf. Mechanism and Machine Science (CCMMS2010)
,
Shanghai, China
,
July 21–25
, pp.
218
226
.
4.
Husty
,
M. L.
, and
Walter
,
D. R.
,
2019
, “Mechanism Constraints and Singularities–the Algebraic Formulation,”
Singular Configurations of Mechanisms and Manipulators, ser. CISM 589
,
A.
Müller
, and
D.
Zlatanov
, eds.,
Springer
,
Cham
, pp.
101
180
.
5.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2008
, “
Analysing Singularities of a Benchmark Problem
,”
Multibody Syst. Dyn.
,
19
, pp.
227
253
. 10.1007/s11044-007-9053-7
6.
de Bustos
,
I.
,
Aguirrebeitia
,
J.
,
Aviles
,
R.
, and
Ansola
,
R.
,
2012
, “
Second Order Mobility Analysis of Mechanisms Using Closure Equations
,”
Meccanica
,
47
(
7
), pp.
1695
1704
. 10.1007/s11012-012-9548-z
7.
Chen
,
C.
,
2011
, “
The Order of Local Mobility of Mechanisms
,”
Mech. Mach. Theory
,
46
, pp.
1251
1264
. 10.1016/j.mechmachtheory.2011.04.007
8.
Kieffer
,
J.
,
1994
, “
Differential Analysis of Bifurcations and Isolated Singularities of Robots and Mechanisms
,”
IEEE Trans. Robot. Automat.
,
10
(
1
), pp.
1
10
. 10.1109/70.285580
9.
Lerbet
,
J.
,
1999
, “
Analytic Geometry and Singularities of Mechanisms
,”
ZAMM. Z. angew. Math. Mech.
,
78
(
10b
), pp.
687
694
. 10.1002/(SICI)1521-4001(199810)78:10<687::AID-ZAMM687>3.0.CO;2-T
10.
Martinez
,
J. R.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
. 10.1016/S0094-114X(98)00029-9
11.
Müller
,
A.
,
2018
, “
Higher-Order Analysis of Kinematic Singularities of Lower Pair Linkages and Serial Manipulators
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011008
.
12.
Müller
,
A.
,
2019
, “Local Investigation of Mobility and Singularities of Linkages,”
Singular Configurations of Mechanisms and Manipulators, ser. CISM 589
,
A.
Müller
, and
D.
Zlatanov
, eds.,
Springer
,
Cham
, pp.
181
229
.
13.
Müller
,
A.
,
2019
, “
An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains With Applications in Robotics and Mechanism Theory
,”
Mech. Mach. Theory
,
142
, p.
103594
. doi.org/10.1016/j.mechmachtheory.2019.103594
14.
Li
,
Q.
, and
Hervé
,
J.
,
2009
, “
Parallel Mechanisms with Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
. 10.1109/TRO.2008.2008737
15.
Gogu
,
G.
,
2011
, “
Maximally Regular T2r1-type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
8
. 10.1115/1.4003180
16.
Park
,
F.
, and
Kim
,
J.
,
1999
, “
Singularity Analysis of Closed Loop Kinematic Chains
,”
ASME. J. Mech. Des.
,
121
(
1
), pp.
32
38
. 10.1115/1.2829426
17.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “Constraint Singularity As C-space Singularities,”
ser. Advances in Robot Kinematics: Theory and Application
,
Thomas
,
F.
, and
Lenarčič
,
J.
, eds.,
Kluwer Academic Publishers
,
Caldes de Malavella Spain
, pp.
183
192
.
18.
Y. Chen
,
F. H.
,
Dai
,
J.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
. 10.1016/j.mechmachtheory.2017.05.019
19.
López-Custodio
,
P.
,
Müller
,
A.
,
Kang
,
X.
, and
Dai
,
J.
,
2020
, “
Tangential Intersection of Branches of Motion
,”
Mech. Mach. Theory
,
147
, p.
103730
.
20.
Müller
,
A.
,
2019
, “
Data for: An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains With Applications in Robotics and Mechanism Theory
,”
Mendeley Data, v1.
Available Online.data.mendeley.com/datasets/tpmczfd932/1
21.
Davis
,
T.
,
2015
, “
A Network Approach to Mechanisms and Machines: Some Lessons Learned
,”
Mech. Mach. Theory
,
89
, pp.
14
27
. 10.1016/j.mechmachtheory.2014.09.006
22.
Müller
,
A.
,
2018
, “
Topology, Kinematics, and Constraints of Multi-Loop Linkages
,”
Robotica
,
36
(
11
), pp.
1641
1663
. 10.1017/S0263574718000619
23.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
24.
López-Custodio
,
P.
, and
Dai
,
J.
,
2019
, “
Design of a Variable-Mobility Linkage Using the Bohemian Dome
,”
ASME. J. Mech. Des.
,
141
(
9
), p.
12
.
25.
Whitney
,
H.
,
1965
, “Local Properties of Analytic Varieties,”
A Symposium in Honor of M. Morse
,
S. S.
Cairns
, ed.,
Princeton University Press
,
Princeton, NJ
, pp.
205
244
.
26.
Cox
,
D.
,
Little
,
J.
, and
O’Shea
,
D.
,
2007
,
Ideals, Varieties and Algorithms
, 3rd ed.,
Springer
,
Cham
.
27.
López-Custodio
,
P.
,
Müller
,
A.
,
Rico
,
J.
, and
Dai
,
J.
,
2019
, “
A Synthesis Method for 1-dof Mechanisms With a Cusp in the Configuration Space
,”
Mech. Mach. Theory
,
132
, pp.
154
175
. 10.1016/j.mechmachtheory.2018.09.008
28.
Connelly
,
R.
, and
Servatius
,
H.
,
1994
, “
Higher-Order Rigidity–What Is the Proper Definition?
,”
Discrete. Comput. Geom.
,
11
, pp.
193
200
. 10.1007/BF02574003
29.
Martinez
,
J. R.
, and
Duffy
,
J.
,
1996
, “
An Application of Screw Algebra to the Acceleration Analysis of Serial Chains
,”
Mech. Mach. Theory
,
31
(
4
), pp.
445
457
. 10.1016/0094-114X(95)00089-H
30.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. and Mach. Theory
,
76
, pp.
70
85
. 10.1016/j.mechmachtheory.2014.01.007
31.
Gallardo-Alvarado
,
J.
, and
Rico-Martinez
,
J.
,
2001
, “
Jerk Influence Coefficients, Via Screw Theory, of Closed Chains
,”
Meccanica
,
36
, pp.
213
228
. 10.1023/A:1013074907533
32.
Gallardo-Alvarado
,
J.
,
Orozco-Mendoza
,
H.
, and
Rodriguez-Castro
,
R.
,
2008
, “
Finding the Jerk Properties of Multi-Body Systems Using Helicoidal Vector Fields
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
222
(
11
), pp.
2217
2229
. 10.1243/09544062JMES1030
33.
López-Custodio
,
P.
,
Rico
,
J.
,
Cervantes-Sanchez
,
J.
,
Perez-Soto
,
G.
, and
Diez-Martinez
,
C.
,
2017
, “
Verification of the Higher Order Kinematic Analyses Equations
,”
Euro. J. Mech. A/Solids
,
61
, pp.
198
215
. 10.1016/j.euromechsol.2016.09.010
34.
Müller
,
A.
,
2016
, “
Higher-Order Constraints for Linkages with Lower Kinematic Pairs
,”
Mech. Mach. Theory
,
100
, pp.
33
43
. 10.1016/j.mechmachtheory.2016.01.012
35.
Guillemin
,
V.
, and
Pollack
,
A.
,
1974
,
Differential Topology
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Hirsch
,
M. W.
, and
Smale
,
S.
,
1974
,
Differential Equations, Dynamical Systems and Linear Algebra
,
Academic
.
37.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-loop Linkages -Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
38.
Buchta Jr
,
A. J.
, and
Voglewede
,
P. A.
,
2017
, “
A Qualitative Survey of Reconfigurable Mechanisms With Industrial Applications
,”
41st ASME Mechanisms and Robotics Conference
,
Cleveland, OH
,
Aug. 6–9
,
DETC2017-67193, V05BT08A001
;
1
8
.
39.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-furcation in a Derivative Queer-square Mechanism
,”
Mech. Mach. Theory.
,
81
, pp.
36
53
. 10.1016/j.mechmachtheory.2014.06.006
40.
Galletti
,
C.
, and
Giannotti
,
E.
,
2002
, “
Multiloop Kinematotropic Mechanisms
,”
ASME 27th Biennial Mechanisms and Robotics Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
455
460
.
41.
Ibarreche
,
J. I.
,
Hernández
,
A.
,
Petuya
,
V.
, and
Urízar
,
M.
,
2019
, “
A Methodology to Achieve the Set of Operation Modes of Reconfigurable Parallel Manipulators
,”
Meccanica
,
54
(
15
), pp.
2507
2520
. 10.1007/s11012-019-01081-5
42.
Lee
,
C.
, and
Hervé
,
J.
,
2005
, “
Discontinuously Movable Seven-link Mechanisms Via Group-Algebraic Approach
,”
J. Mech. Eng. Sci. Proc. Inst. Mech. Eng.
,
219
(
6
), pp.
577
587
. 10.1243/095440605X31436
You do not currently have access to this content.