Abstract

The optimization of the assistive force of a soft exosuit is crucial to the assistive effect. In this paper, an inertial measurement unit (IMU)-based optimization controller was designed to provide effective hip extension and flexion assistance for a soft hip-assistive exosuit. The parameters of the assistive profiles that were defined by two functions were approximatively estimated based on an analysis of biological hip power, and then optimized in real time using the hip angles measured by two IMUs bound to the thighs of the wearer. The peak and offset timings were determined using the parameters of the previous gait, while the start and stop points were determined from those of the current gait. Confirmation experiment was conducted in which four subjects were tested to demonstrate the validity of the optimization by applying the optimized parameters to the soft exosuit developed by the authors' group. Two of the subjects completed the outdoor walking test at a self-determined pace while carrying a load of 15 kg. All the subjects conducted the walking test on a treadmill at a constant speed of 1.53 m/s with the same load. The results showed that the proposed optimization controller worked well without considering individual differences. In the outdoor walking test, the wearer's natural gait could be maintained by applying the optimized assistive forces. In the treadmill walking test, metabolic rate with assistance turned on was reduced by 8.53 ± 2.65% (average ± SEM) compared with the result of assistance turned off.

References

1.
Hao
,
M.
,
Zhang
,
J.
,
Chen
,
K.
,
Asada
,
H.
, and
Fu
,
C.
,
2020
, “
Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage
,”
ASME J. Mech. Robot.
,
12
(
6
), p.
061014
. 10.1115/1.4047729
2.
Li
,
M.
,
Yuan
,
Z.
,
Aoyama
,
T.
, and
Hasegawa
,
Y.
,
2018
, “
Precise Foot Positioning of Walking Robot for Paraplegic Patient Wearing Exoskeleton by Using Electrical Stimulation Feedback
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
044505
. 10.1115/1.4040354
3.
Font-Llagunes
,
J. M.
,
Lugrís
,
U.
,
Clos
,
D.
,
Alonso
,
F. J.
, and
Cuadrado
,
J.
,
2020
, “
Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury
,”
ASME J. Mech. Robot.
,
12
(
3
), p.
031008
. 10.1115/1.4045510
4.
Lee
,
Y.
,
Kim
,
Y.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J. S.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
. 10.1109/TMECH.2017.2718999
5.
Shafiei
,
M.
, and
Behzadipour
,
S.
,
2019
, “
The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort
,”
ASME J. Mech. Robot.
,
12
(
1
), p.
011007
. 10.1115/1.4044841
6.
Chang
,
Y.
,
Wang
,
W.
, and
Fu
,
C.
,
2020
, “
A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off
,”
ASME J. Mech. Robot.
,
12
(
5
), p.
051011
. 10.1115/1.4046835
7.
Giovacchini
,
F.
,
Vannetti
,
F.
,
Fantozzi
,
M.
,
Cempini
,
M.
,
Cortese
,
M.
,
Parri
,
A.
,
Yan
,
T.
,
Lefeber
,
D.
, and
Vitiello
,
N.
,
2015
, “
A Light-Weight Active Orthosis for Hip Movement Assistance
,”
Robot. Autonom. Syst.
,
73
, pp.
123
134
. 10.1016/j.robot.2014.08.015
8.
Wu
,
Q.
,
Wang
,
X.
,
Du
,
F.
, and
Zhang
,
X.
,
2015
, “
Design and Control of a Powered Hip Exoskeleton for Walking Assistance
,”
Int. J. Adv. Robot. Syst.
,
12
(
3
), p.
18
. 10.5772/59757
9.
Aliman
,
N.
,
Ramli
,
R.
, and
Haris
,
S. M.
,
2017
, “
Design and Development of Lower Limb Exoskeletons: A Survey
,”
Robot. Auton. Syst.
,
95
, pp.
102
116
. 10.1016/j.robot.2017.05.013
10.
Chen
,
B.
,
Ma
,
H.
,
Qin
,
L.
,
Gao
,
F.
,
Chan
,
K.
,
Law
,
S.
,
Qin
,
L.
, and
Liao
,
W.
,
2016
, “
Recent Developments and Challenges of Lower Extremity Exoskeletons
,”
J. Orthop. Translat.
,
5
, pp.
26
37
. 10.1016/j.jot.2015.09.007
11.
Young
,
A.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
. 10.1109/TNSRE.2016.2521160
12.
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Robot. Res.
,
34
(
6
), pp.
744
762
. 10.1177/0278364914562476
13.
Asbeck
,
A. T.
,
Schmidt
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Soft Exosuit for Hip Assistance
,”
Rob. Auton. Syst.
,
73
, pp.
102
110
. 10.1016/j.robot.2014.09.025
14.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Quinlivan
,
B.
,
De Rossi
,
S. M. M.
, and
Walsh
,
C. J.
,
2014
, “
Multi-Joint Actuation Platform for Lower Extremity Soft Exosuits
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
1327
1334
.
15.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc., Interface
,
9
(
66
), pp.
110
118
. 10.1098/rsif.2011.0182
16.
Franz
,
J. R.
, and
Kram
,
R.
,
2012
, “
The Effects of Grade and Speed on Leg Muscle Activations During Walking
,”
Gait Posture
,
35
(
1
), pp.
143
147
. 10.1016/j.gaitpost.2011.08.025
17.
Griffin
,
T. M.
,
Roberts
,
T. J.
, and
Kram
,
R.
,
2003
, “
Metabolic Cost of Generating Muscular Force in Human Walking: Insights From Load-Carrying and Speed Experiments
,”
J. Appl. Physiol.
,
95
(
1
), pp.
172
183
. 10.1152/japplphysiol.00944.2002
18.
Perry
,
J.
, and
Burnfield
,
J. M.
,
2010
, “
Gait Analysis: Normal and Pathological Function
,”
J. Sports Sci. Med.
,
9
(
2
), p.
353
.
19.
Umberger
,
B. R.
,
2010
, “
Stance and Swing Phase Costs in Human Walking
,”
J. R. Soc., Interface
,
7
(
50
), pp.
1329
1340
. 10.1098/rsif.2010.0084
20.
Barbara
,
P.
,
Alexandre
,
P. T. L.
,
Chiara
,
Z.
,
Lorenzo
,
B.
,
Elisabetta
,
B.
,
Hélène
,
F. F.
,
Federico
,
S.
, and
David
,
C.
,
2015
, “
Exploring Muscle Activation During Nordic Walking: A Comparison Between Conventional and Uphill Walking
,”
PLoS One
,
10
(
9
), p.
e0138906
. 10.1371/journal.pone.0138906
21.
Ding
,
Y.
,
Kim
,
M.
,
Kuindersma
,
S.
, and
Walsh
,
C. J.
,
2018
, “
Human-in-the-Loop Optimization of Hip Assistance With a Soft Exosuit During Walking
,”
Sci. Robot.
,
3
(
15
), p.
eaar5438
. 10.1126/scirobotics.aar5438
22.
Jin
,
S.
,
Iwamoto
,
N.
,
Hashimoto
,
K.
, and
Yamamoto
,
M.
,
2017
, “
Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
8
), pp.
1192
1201
. 10.1109/TNSRE.2016.2613886
23.
Guo
,
S.
,
Xiang
,
Q.
,
Hashimoto
,
K.
, and
Jin
,
S.
,
2020
, “
Assistive Force of a Belt Type Hip Assist Suit for Lifting the Swing Leg During Walking
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug 31
, pp.
4841
4847
.
24.
Hageman
,
P. A.
, and
Blanke
,
D. J.
,
1986
, “
Comparison of Gait of Young Women and Elderly Women
,”
Phys. Ther.
,
66
(
9
), pp.
1382
1387
. 10.1093/ptj/66.9.1382
25.
Ostrosky
,
K. M.
,
VanSwearingen
,
J. M.
,
Burdett
,
R. G.
, and
Gee
,
Z.
,
1994
, “
A Comparison of Gait Characteristics in Young and Old Subjects
,”
Phys. Ther.
,
74
(
7
), pp.
637
644
. 10.1093/ptj/74.7.637
26.
Ridge
,
S. T.
,
Henley
,
J.
,
Manal
,
K.
,
Miller
,
F.
, and
Richards
,
J. G.
,
2016
, “
Biomechanical Analysis of Gait Termination in 11–17 Year Old Youth at Preferred and Fast Walking Speeds
,”
Hum. Mov. Sci.
,
49
, pp.
178
185
. 10.1016/j.humov.2016.07.001
27.
Winter
,
D. A.
,
1984
, “
Kinematic and Kinetic Patterns in Human Gait: Variability and Compensating Effects
,”
Hum. Mov. Sci.
,
3
(
1
), pp.
51
76
. 10.1016/0167-9457(84)90005-8
28.
Lee
,
G.
,
Ding
,
Y.
,
Bujanda
,
I. G.
,
Karavas
,
N.
,
Zhou
,
Y. M.
, and
Walsh
,
C. J.
,
2017
, “
Improved Assistive Profile Tracking of Soft Exosuits for Walking and Jogging With Off-Board Actuation
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
1699
1706
.
29.
Grimmer
,
M.
,
Quinlivan
,
B. T.
,
Lee
,
S.
,
Malcolm
,
P.
,
Rossi
,
D. M.
,
Siviy
,
C.
, and
Walsh
,
C. J.
,
2019
, “
Comparison of the Human-Exosuit Interaction Using Ankle Moment and Ankle Positive Power Inspired Walking Assistance
,”
J. Biomech.
,
83
, pp.
76
84
. 10.1016/j.jbiomech.2018.11.023
30.
Lee
,
S.
,
Kim
,
J.
,
Baker
,
L.
,
Long
,
A.
,
Karavas
,
N.
,
Menard
,
N.
,
Galiana
,
I.
, and
Walsh
,
C. J.
,
2018
, “
Autonomous Multi-Joint Soft Exosuit With Augmentation-Power-Based Control Parameter Tuning Reduces Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehabil.
,
15
(
1
), p.
9
. 10.1186/s12984-018-0350-6
31.
Zhang
,
J. J.
,
Fiers
,
P.
,
Witte
,
K. A.
,
Jackson
,
R. W.
,
Poggensee
,
K. L.
,
Atkeson
,
C. G.
, and
Collins
,
S. H.
,
2017
, “
Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking
,”
Science
,
356
(
6344
), pp.
1280
1283
. 10.1126/science.aal5054
32.
Ding
,
Y.
,
Galiana
,
I.
,
Siviy
,
C.
,
Panizzolo
,
F. A.
, and
Walsh
,
C. J.
,
2016
, “
IMU-Based Iterative Control for Hip Extension Assistance With a Soft Exosuit
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3501
3508
.
33.
Jin
,
S.
,
Xiong
,
X.
,
Zhao
,
D.
,
Jin
,
C.
, and
Yamamoto
,
M.
,
2019
, “
Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons
,”
Appl. Sci.
,
9
(
9
), p.
13
. 10.3390/app9091957
34.
Kitatani
,
R.
,
Ohata
,
K.
,
Takahashi
,
H.
,
Shibuta
,
S.
,
Hashiguchi
,
Y.
, and
Yamakami
,
N.
,
2014
, “
Reduction in Energy Expenditure During Walking Using an Automated Stride Assistance Device in Healthy Young Adults
,”
Arch. Phys. Med. Rehabil.
,
95
(
11
), pp.
2128
2133
. 10.1016/j.apmr.2014.07.008
35.
Kim
,
J.
,
Lee
,
G.
,
Heimgartner
,
R.
,
Revi
,
D. A.
,
Karavas
,
N.
,
Nathanson
,
D.
,
Galiana
,
I.
,
Eckert-Erdheim
,
A.
,
Murphy
,
P.
,
Perry
,
D.
,
Menard
,
N.
,
Choe
,
D. K.
,
Malcolm
,
P.
, and
Walsh
,
C. J.
,
2019
, “
Reducing the Metabolic Rate of Walking and Running With a Versatile, Portable Exosuit
,”
Science
,
365
(
6454
), pp.
668
672
. 10.1126/science.aav7536
36.
Catalfamo
,
P.
,
Moser
,
D.
,
Ghoussayni
,
S.
, and
Ewins
,
D.
,
2008
, “
Detection of Gait Events Using an F-Scan In-Shoe Pressure Measurement System
,”
Gait Posture
,
28
(
3
), pp.
420
426
. 10.1016/j.gaitpost.2008.01.019
37.
Lenzi
,
T.
,
Carrozza
,
M. C.
, and
Agrawal
,
S. K.
,
2013
, “
Powered Hip Exoskeletons Can Reduce the User's Hip and Ankle Muscle Activations During Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
6
), pp.
938
948
. 10.1109/TNSRE.2013.2248749
38.
Lewis
,
C. L.
, and
Ferris
,
D. P.
,
2014
, “
Invariant Hip Moment Pattern While Walking With a Robotic Hip Exoskeleton
,”
J. Biomech.
,
47
(
7
), pp.
1748
1748
. 10.1016/j.jbiomech.2014.02.032
39.
Perry
,
J.
,
Slac
,
k.
, and
Davids
,
J. R.
,
1992
, “
Gait Analysis: Normal and Pathological Function
,”
J. Pediatr. Orthop.
,
12
(
6
), pp.
815
. 10.1097/01241398-199211000-00023
40.
Winter
,
D. A.
,
1987
,
Biomechanics and Motor Control of Human Movement
,
University of Waterloo Press
,
Ontario, Canada
.
41.
Simpson
,
K. M.
,
Munro
,
B. J.
, and
Steele
,
J. R.
,
2011
, “
Backpack Load Affects Lower Limb Muscle Activity Patterns of Female Hikers During Prolonged Load Carriage
,”
J. Electromyogr. Kinesiol.
,
21
(
5
), pp.
782
788
. 10.1016/j.jelekin.2011.05.012
42.
Sadeghi
,
H.
,
Prince
,
F.
,
Zabjek
,
K.
, and
Allard
,
P.
,
2001
, “
Sagittal-Hip-Muscle Power During Walking in Old and Young Able-Bodied Men
,”
J. Aging Phys. Act.
,
9
(
2
), pp.
172
183
. 10.1123/japa.9.2.172
43.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
Oíconnor
,
J. C.
,
1992
,
Dynamics of Human Gait
,
Kiboho Publishers
,
Cape Town, South Africa
.
44.
Bowker
,
P.
,
1991
, “
Gait Analysis: An Introduction
,”
Physiotherapy
,
77
(
11
), p.
786
. 10.1016/S0031-9406(10)62081-0
45.
Ding
,
Y.
,
Panizzolo
,
F. A.
,
Siviy
,
C.
,
Malcolm
,
P.
,
Galiana
,
I.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
Effect of Timing of Hip Extension Assistance During Loaded Walking With a Soft Exosuit
,”
J. NeuroEng. Rehabil.
,
13
(
1
), p.
10
. 10.1186/s12984-016-0196-8
46.
Ding
,
Y.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Marco
,
S.
,
De Rossi
,
M.
,
Bae
,
J.
,
Santos
,
T. R. T.
,
de Araujo
,
V. L.
,
Lee
,
S.
,
Holt
,
K. G.
, and
Walsh
,
C.
,
2017
, “
Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
119
130
. 10.1109/TNSRE.2016.2523250
47.
Jin
,
S.
,
Guo
,
S.
,
Kazunobu
,
H.
,
Xiong
,
X.
, and
Yamamoto
,
M.
,
2018
, “
Influence of a Soft Robotic Suit on Metabolic Cost in Long-Distance Level and Inclined Walking
,”
Appl. Bionics Biomech.
,
2018
, p.
9573951
. 10.1155/2018/9573951
48.
Zuntz
,
N.
,
1901
, “
Ueber die Bedeutung der Verschiedenen Nährstoffe als Erzeuger der Muskelkraft
,”
Archiv Für Die Gesamte Physiologie Des Menschen Und Der Tiere
,
83
(
10–12
), pp.
557
571
. 10.1007/bf01746509
49.
Mcdaniel
,
J.
,
Durstine
,
J. L.
,
Hand
,
G. A.
, and
Martin
,
J. C.
,
2002
, “
Determinants of Metabolic Cost During Submaximal Cycling
,”
J. Appl. Physiol.
,
93
(
3
), pp.
823
828
. 10.1152/japplphysiol.00982.2001
50.
Fuglei
,
E.
, and
Oritsland
,
N. A.
,
1999
, “
Body Composition, Resting and Running Metabolic Rates, and Net Cost of Running in Rats During Starvation
,”
Acta Physiol. Scand.
,
165
(
2
), pp.
203
210
. 10.1046/j.1365-201x.1999.00511.x
You do not currently have access to this content.