Abstract

This paper studies the stiffness and experiment of a five-degrees-of-freedom (DOF) hybrid, serial–parallel, manipulator, with all rotating axes being continuous: TriRhino. First, the motion principle of the hybrid manipulator is introduced and the structural design is presented. Next, the stiffness analysis of the hybrid manipulator is carried out. Specifically, a stiffness test, based on prototype and loading device, is performed, proving that the real stiffness is lower than that obtained by the finite element analysis. Following, the main geometric parameters, involving error, are determined, while the real values of the parameters with an error are identified, through performed calibration experiments. Finally, the measurement results show that the positioning accuracy of the manipulator is significantly improved, after kinematic calibration. Moreover, machining experiments on a workpiece show the great ability of the proposed manipulator, in machining parts with curved surface; thus, great application prospects, in the machining of structural parts with complex surfaces, are quite realistic.

References

1.
Terrier
,
M.
,
Dugas
,
A.
, and
Hascoët
,
J. Y.
,
2004
, “
Qualification of Parallel Kinematics Machines in High-Speed Milling on Free Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
44
(Suppl.
7–8
), pp.
865
877
. 10.1016/j.ijmachtools.2003.11.003
2.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J.
, and
Niu
,
H.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101857
. 10.1016/j.rcim.2019.101857
3.
Liu
,
N.
, and
Wu
,
J.
,
2014
, “
Kinematics and Application of a Hybrid Industrial Robot–Delta-RST
,”
Sens. Transducers
,
169
(
4
), pp.
186
192
.
4.
Lai
,
Y. L.
,
Liao
,
C. C.
, and
Chao
,
Z. G.
,
2018
, “
Inverse Kinematics for a Novel Hybrid Parallel–Serial Five-Axis Machine Tool
,”
Robot. Comput. Integr. Manuf.
,
50
, pp.
63
79
. 10.1016/j.rcim.2017.09.002
5.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
J. Mech. Transm. Automat. Des.
,
105
(
4
), pp.
705
712
. 10.1115/1.3258540
6.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Seneviratne
,
L. D.
,
2016
, “
Unified Kinematics and Optimal Design of a 3RRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
(
part 2
), pp.
239
254
. 10.1016/j.mechmachtheory.2015.08.005
7.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Robot Cim-Int. Manuf.
,
28
(
3
), pp.
334
343
. 10.1016/j.rcim.2011.10.003
8.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
. 10.1115/1.4001781
9.
Su
,
H. J.
,
Zhou
,
L.
, and
Zhang
,
Y.
,
2013
, “Mobility Analysis and Type Synthesis With Screw Theory: From Rigid Body Linkages to Compliant Mechanisms,”
Advances in Mechanisms, Robotics and Design Education and Research. Mechanisms and Machine Science
, Vol.
14
,
V.
Kumar
,
J.
Schmiedeler
,
S.
Sreenivasan
, and
H. J.
Su
, eds.,
Springer
,
Heidelberg
.
10.
Jiang
,
Y.
,
Li
,
T. M.
,
Wang
,
L. P.
, and
Chen
,
F.
,
2018
, “
Kinematic Error Modeling and Identification of the Over-Constrained Parallel Kinematic Machine
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
105
119
. 10.1016/j.rcim.2017.06.001
11.
Wang
,
Y. Y.
,
Huang
,
T.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2006
, “
Finite Element Analysis and Comparison of two Hybrid Robots–the Tricept and the Trivariant
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
490
495
.
12.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Analysis and Design Optimization of the Tricept Machine Tool Family
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
725
733
. 10.1115/1.1471529
13.
Shi
,
J.
,
Wang
,
Y.
,
Zhang
,
G.
, and
Ding
,
H.
,
2013
, “
Optimal Design of 3-DOF PKM Module for Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1879
1889
. 10.1007/s00170-012-4467-7
14.
Jin
,
Y.
,
Bi
,
Z. M.
,
Liu
,
H. T.
,
Higgins
,
C.
,
Price
,
M.
,
Chen
,
W. H.
, and
Huang
,
T.
,
2015
, “
Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041004
. 10.1115/1.4029499
15.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DoF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
. 10.1016/j.ijmachtools.2015.04.012
16.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2010
, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Robot.
,
26
(
3
), pp.
401
410
. 10.1109/TRO.2010.2047528
17.
Gao
,
F.
,
Yang
,
J. L.
, and
Ge
,
Q. J.
,
2011
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Des.
,
3
(
1
), p.
011003
. 10.1115/1.4002697
18.
Fan
,
C. X.
,
Liu
,
H. Z.
, and
Zhang
,
Y. B.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
, pp.
184
190
. 10.1016/j.mechmachtheory.2012.10.006
19.
Gogu
,
G.
,
2005
, “
Fully-isotropic T1R2-Type Parallel Robots with Three Degrees of Freedom
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Long Beach, CA
,
June 11
.
20.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2016
, “Type Synthesis of Three-DOF Up-Equivalent Parallel Manipulators Using a Virtual-Chain Approach,”
Advances in Robot Kinematics
,
J.
Lennarčič
, and
B.
Roth
, eds.,
Springer
,
Dordrecht
.
21.
Dong
,
C.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2019
, “
A Screw Theory-Based Semi-analytical Approach for Elastodynamics of the Tricept Robot
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031005
. 10.1115/1.4043047
22.
Sun
,
T.
, and
Song
,
Y. M.
,
2010
, “
Dimensional Synthesis of a 3-DOF Parallel Manipulator Based on Dimensionally Homogeneous Jacobian Matrix
,”
Sci. China: Technol. Sci.
,
53
(
1
), pp.
168
174
. 10.1007/s11431-009-0375-y
23.
Pond
,
G.
, and
Carretero
,
J. A.
,
2009
, “
Architecture Optimization of Three 3-PRS Variants for Parallel Kinematic Machining. Robot
,”
Robot. Comput. Integr. Manuf.
,
25
(
1
), pp.
64
72
. 10.1016/j.rcim.2007.09.002
24.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2007
, “
Kinematic Analysis of a 3-PRS Parallel Manipulator
,”
Robot Cim-Int. Manuf.
,
23
(
4
), pp.
395
408
. 10.1016/j.rcim.2006.04.007
25.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
. 10.1016/j.rcim.2010.07.006
26.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the Trivariant-a Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
449
456
. 10.1109/TRO.2004.840908
27.
Huang
,
T.
,
Dong
,
C.
, and
Liu
,
H.
,
2017
,
Five-Degree-of-Freedom Hybrid Robot With Rotational Supports
,
2017-04-27, US2017113356/WO2017005015 (A1), patent
.
28.
Huang
,
T.
,
Dong
,
C.
,
Liu
,
H.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2019
, “
A Simple and Visually Orientated Approach for Type Synthesis of Overconstrained 1T2R Parallel Mechanisms
,”
Robotica
,
37
(
7
), pp.
1161
1173
. 10.1017/S0263574718000395
29.
Tian
,
W. J.
,
Mou
,
M. W.
,
Yang
,
J. H.
, and
Yin
,
F.
,
2019
, “
Kinematic Calibration of a 5-DOF Hybrid Kinematic Machine Tool by Considering the Ill-Posed Identification Problem Using Regularisation Method
,”
Robot. Comput. Integr. Manuf.
,
60
, pp.
49
62
. 10.1016/j.rcim.2019.05.016
30.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
301
306
. 10.1115/1.1666887
31.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2014
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Robot.
,
30
(
6
), pp.
1333
1343
. 10.1109/TRO.2014.2344450
32.
Zhang
,
D. S.
,
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y.
,
2018
, “
Design of a Novel 5-DOF Hybrid Serial-Parallel Manipulator and Theoretical Analysis of Its Parallel Part
,”
Robot. Comput. Integr. Manuf.
,
53
, pp.
228
239
. 10.1016/j.rcim.2018.04.004
33.
Xu
,
Y. D.
,
Zhang
,
D. S.
,
Yao
,
J. T.
, and
Zhao
,
Y.
,
2017
, “
Type Synthesis of the 2R1T Parallel Mechanism With Two Continuous Rotational Axes and Study on the Principle of its Motion Decoupling
,”
Mech. Mach. Theory
,
108
, pp.
27
40
. 10.1016/j.mechmachtheory.2016.09.007
34.
Huang
,
Z.
, and
Fang
,
Y. F.
,
1995
, “
Motion Characteristics and Rotational Axis Analysis of 3-Dof Parallel Robot Mechanisms
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Vancouver, BC
,
Oct. 22–25
, vol.
1
, pp.
67
71
.
35.
Li
,
Q. C.
,
Chen
,
Q. H.
,
Wu
,
C. Y.
, and
Huang
,
Z.
,
2013
, “
Geometrical Distribution of Rotational Axes of 3-[P][S] Parallel Mechanisms
,”
Mech. Mach. Theory
,
65
, pp.
46
57
. 10.1016/j.mechmachtheory.2013.02.007
36.
Li
,
Q. C.
,
Chen
,
Z.
,
Chen
,
Q. H.
,
Wu
,
C.
, and
Hu
,
X.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Robot Cim-Int. Manuf.
,
27
(
2
), pp.
389
396
. 10.1016/j.rcim.2010.08.007
37.
Zhang
,
D. S.
,
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y.S.
,
2018
, “
Analysis and Optimization of a Spatial Parallel Mechanism for a New 5-DOF Hybrid Serial-Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
31
(
3
), p.
54
. 10.1186/s10033-018-0251-4
38.
Zhang
,
D. S.
,
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y.S.
,
2018
, “
Kinematics Modelling and Optimization Design of a 5-DOF Hybrid Manipulator
,”
Int. J. Robot. Autom.
,
33
(
4
), pp.
407
417
.
You do not currently have access to this content.