Abstract

This paper presents a novel parallel architecture with seven active degrees-of-freedom (DOFs) for general-purpose haptic devices. The prime features of the proposed mechanism are partial decoupling, large dexterous working area, and fixed actuators. The detailed processes of design, modeling, and optimization is introduced, and the performance is simulated. After that, a mechanical prototype is fabricated and tested. Results of the simulations and experiments reveal that the proposed mechanism possesses excellent performances on motion flexibility and force feedback. This paper aims to provide a remarkable solution of the general-purpose haptic device for teleoperation systems with an uncertain mission in complex applications.

References

1.
Escobarcastillejos
,
D.
,
Noguez
,
J.
,
Neri
,
L.
,
Magana
,
A. J.
, and
Benes
,
B.
,
2016
, “
A Review of Simulators With Haptic Devices for Medical Training
,”
J. Med. Syst.
,
40
(
4
), pp.
1
22
.
2.
Marturi
,
N.
,
Rastegarpanah
,
A.
,
Takahashi
,
C.
,
Stolkin
,
R.
, and
Bekiroglu
,
Y.
,
2017
, “
Towards Advanced Robotic Manipulation for Nuclear Decommissioning: A Pilot Study on Tele-operation and Autonomy
,”
International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
,
Amritapuri, Kollam, Kerala, India
,
Dec. 18–20, 2016
,
IEEE
.
3.
Hirabayashi
,
T.
,
Akizono
,
J.
,
Yamamoto
,
T.
,
Sakai
,
H.
, and
Yano
,
H.
,
2006
, “
Teleoperation of Construction Machines With Haptic Information for Underwater Applications
,”
Automat. Constr.
,
15
(
5
), pp.
563
570
.
4.
Li
,
C.
,
Wang
,
T.
,
Hu
,
L.
,
Tang
,
P.
,
Wang
,
L.
,
Zhang
,
L.
,
Guo
,
N.
, and
Tan
,
Y.
,
2016
, “
A Novel Master-Slave Teleoperation Robot System for Diaphyseal Fracture Reduction: A Preliminary Study
,”
Comput. Assist. Surg.
,
21
(
sup1
), pp.
162
167
.
5.
Li
,
C.
,
Gu
,
X.
,
Xiao
,
X.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Flexible Robot With Variable Stiffness in Transoral Surgery
,”
IEEE ASME Trans. Mechatron.
,
25
(
1
), pp.
1
10
.
6.
Li
,
J.
,
Zhou
,
N.
,
Wang
,
S.
,
Gao
,
Y.
, and
Liu
,
D.
,
2012
, “
Design of an Integrated Master–Slave Robotic System for Minimally Invasive Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
8
(
1
), pp.
77
84
.
7.
Lee
,
S. S.
, and
Lee
,
J. M.
,
2003
, “
Design of a General Purpose 6-DOF Haptic Interface
,”
Mechatronics
,
13
(
7
), pp.
697
722
.
8.
Tholey
,
G.
, and
Desai
,
J. P.
,
2007
, “
A General-Purpose 7 DOF Haptic Device: Applications Toward Robot-Assisted Surgery
,”
IEEE/ASME Trans. Mechatron.
,
12
(
6
), pp.
662
669
.
9.
Xu
,
X.
,
Song
,
A.
,
Ni
,
D.
,
Li
,
H.
,
Xiong
,
P.
, and
Zhu
,
C.
,
2016
, “
Visual-Haptic Aid Teleoperation Based on 3-D Environment Modeling and Updating
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6419
6428
.
10.
Lee
,
G.
,
Hur
,
S.
, and
Oh
,
Y.
,
2017
, “
High-Force Display Capability and Wide Workspace With a Novel Haptic Interface
,”
IEEE ASME Trans. Mechatron.
,
22
(
1
), pp.
138
148
.
11.
Steger
,
R.
,
Lin
,
K.
,
Adelstein
,
B. D.
, and
Kazerooni
,
H.
,
2004
, “
Design of a Passively Balanced Spatial Linkage Haptic Interface
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
984
991
.
12.
Tobergte
,
A.
, and
Helmer
,
P.
,
2013
, “
A Disturbance Observer for the Sigma.7 Haptic Device
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4964
4969
.
13.
Taati
,
B.
,
Tahmasebi
,
A. M.
, and
Hashtrudi-Zaad
,
K.
,
2008
, “
Experimental Identification and Analysis of the Dynamics of a PHANTOM Premium 1.5A Haptic Device
,”
Pres. Teleop. Virt. Environ.
,
17
(
4
), pp.
327
343
.
14.
Chablat
,
D.
, and
Wenger
,
P.
,
2007
, “
A Six Degree-of-Freedom Haptic Device Based on the Orthoglide and a Hybrid Agile Eye
,”
arXiv: Robotics.
15.
Stewart
,
D.
,
1966
, “
A Platform With Six Degrees of Freedom
,”
Aircr. Eng.
,
38
(
4
), pp.
30
35
.
16.
Yoon
,
J. W.
,
Ryu
,
J.
, and
Hwang
,
Y. K.
,
2010
, “
Optimum Design of 6-DOF Parallel Manipulator With Translational/Rotational Workspaces for Haptic Device Application
,”
J. Mech. Sci. Technol.
,
24
(
5
), pp.
1151
1162
.
17.
Arata
,
J.
,
Ikedo
,
N.
, and
Fujimoto
,
H.
,
2012
, “
New Multi-D.O.F. Haptic Device Using a Parallel Mechanism With a Wide Rotational Working Area
,”
Adv. Robot.
,
26
(
1
), pp.
121
135
.
18.
Vulliez
,
M.
,
Zeghloul
,
S.
, and
Khatib
,
O.
,
2018
, “
Design Strategy and Issues of the Delthaptic, a New 6-DOF Parallel Haptic Device
,”
Mech. Mach. Theory
,
128
, pp.
395
411
.
19.
Vu
,
M. H.
, and
Na
,
U. J.
,
2011
, “
A New 6-DOF Haptic Device for Teleoperation of 6-DOF Serial Robots
,”
IEEE Trans. Instrum. Meas.
,
60
(
11
), pp.
3510
3523
.
20.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2T and 3R3T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011004
.
21.
Haouas
,
W.
,
Dahmouche
,
R.
,
Le Fort-Piat
,
N.
, and
Laurent
,
G. J.
,
2018
, “
A New Seven Degrees-of-Freedom Parallel Robot With a Foldable Platform
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
045001
.
22.
Aginaga
,
J.
,
Iriarte
,
X.
,
Plaza
,
A.
, and
Mata
,
V.
,
2018
, “
Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092304
.
23.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Parallel Robots With Configurable Platforms: Fundamental Aspects of a New Class of Robotic Architectures
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
3
), pp.
463
472
.
24.
Lambert
,
P.
, and
Herder
,
J. L.
,
2019
, “
A 7-DOF Redundantly Actuated Parallel Haptic Device Combining 6-DOF Manipulation and 1-DOF Grasping
,”
Mech. Mach. Theory
,
134
, pp.
349
364
.
25.
Kim
,
H. W.
,
Lee
,
J. H.
,
Suh
,
I. H.
, and
Yi
,
B. J.
,
2005
, “
Comparative Study and Experimental Verification of Singular-Free Algorithms for a 6 DOF Parallel Haptic Device
,”
Mechatronics
,
15
(
4
), pp.
403
422
.
26.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Robot. Syst.
,
86
(
2
), pp.
175
198
.
27.
Liu
,
G.
,
Wang
,
Y.
,
Zhang
,
Y.
, and
Xie
,
Z.
,
2015
, “
Real-Time Solution of the Forward Kinematics for a Parallel Haptic Device Using a Numerical Approach Based on Neural Networks
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2487
2499
.
28.
Ahmad
,
A.
,
Andersson
,
K.
, and
Sellgren
,
U.
,
2014
, “
A Model-Based and Simulation-Driven Methodology for Design of Haptic Devices
,”
Mechatronics
,
24
(
7
), pp.
805
818
.
29.
Boanta
,
C.
, and
Csiszar
,
A.
,
2017
, “
Optimal Design of a Parallel Structure Used as a Haptic Interface
,”
Mech. Mach. Theory
,
116
, pp.
69
88
.
30.
Lee
,
J. H.
,
Eom
,
K. S.
,
Yi
,
B. J.
, and
Suh
,
I. H.
,
2006
, “
Design of a New 6-DOF Parallel Haptic Device
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164)
,
Seoul, South Korea
,
May 21–26
,
IEEE
, pp.
886
891
.
31.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
166
173
.
32.
Khan
,
S.
,
Andersson
,
K.
, and
Wikander
,
J.
,
2015
, “
Jacobian Matrix Normalization—A Comparison of Different Approaches in the Context of Multi-objective Optimization of 6-DOF Haptic Devices
,”
J. Intell. Robot. Syst.
,
79
(
1
), pp.
87
100
.
33.
Kim
,
S. H.
,
Jeon
,
D.
,
Shin
,
H. P.
,
In
,
W.
, and
Kim
,
J.
,
2009
, “
Design and Analysis of Decoupled Parallel Mechanism With Redundant Actuator
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
93
99
.
You do not currently have access to this content.