Abstract
This paper presents a novel parallel architecture with seven active degrees-of-freedom (DOFs) for general-purpose haptic devices. The prime features of the proposed mechanism are partial decoupling, large dexterous working area, and fixed actuators. The detailed processes of design, modeling, and optimization is introduced, and the performance is simulated. After that, a mechanical prototype is fabricated and tested. Results of the simulations and experiments reveal that the proposed mechanism possesses excellent performances on motion flexibility and force feedback. This paper aims to provide a remarkable solution of the general-purpose haptic device for teleoperation systems with an uncertain mission in complex applications.
Issue Section:
Design Innovation Paper
References
1.
Escobarcastillejos
, D.
, Noguez
, J.
, Neri
, L.
, Magana
, A. J.
, and Benes
, B.
, 2016
, “A Review of Simulators With Haptic Devices for Medical Training
,” J. Med. Syst.
, 40
(4
), pp. 1
–22
. 2.
Marturi
, N.
, Rastegarpanah
, A.
, Takahashi
, C.
, Stolkin
, R.
, and Bekiroglu
, Y.
, 2017
, “Towards Advanced Robotic Manipulation for Nuclear Decommissioning: A Pilot Study on Tele-operation and Autonomy
,” International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
, Amritapuri, Kollam, Kerala, India
, Dec. 18–20, 2016
, IEEE
.3.
Hirabayashi
, T.
, Akizono
, J.
, Yamamoto
, T.
, Sakai
, H.
, and Yano
, H.
, 2006
, “Teleoperation of Construction Machines With Haptic Information for Underwater Applications
,” Automat. Constr.
, 15
(5
), pp. 563
–570
. 4.
Li
, C.
, Wang
, T.
, Hu
, L.
, Tang
, P.
, Wang
, L.
, Zhang
, L.
, Guo
, N.
, and Tan
, Y.
, 2016
, “A Novel Master-Slave Teleoperation Robot System for Diaphyseal Fracture Reduction: A Preliminary Study
,” Comput. Assist. Surg.
, 21
(sup1
), pp. 162
–167
. 5.
Li
, C.
, Gu
, X.
, Xiao
, X.
, Lim
, C. M.
, and Ren
, H.
, 2020
, “Flexible Robot With Variable Stiffness in Transoral Surgery
,” IEEE ASME Trans. Mechatron.
, 25
(1
), pp. 1
–10
. 6.
Li
, J.
, Zhou
, N.
, Wang
, S.
, Gao
, Y.
, and Liu
, D.
, 2012
, “Design of an Integrated Master–Slave Robotic System for Minimally Invasive Surgery
,” Int. J. Med. Robot. Comput. Assist. Surg.
, 8
(1
), pp. 77
–84
. 7.
Lee
, S. S.
, and Lee
, J. M.
, 2003
, “Design of a General Purpose 6-DOF Haptic Interface
,” Mechatronics
, 13
(7
), pp. 697
–722
. 8.
Tholey
, G.
, and Desai
, J. P.
, 2007
, “A General-Purpose 7 DOF Haptic Device: Applications Toward Robot-Assisted Surgery
,” IEEE/ASME Trans. Mechatron.
, 12
(6
), pp. 662
–669
. 9.
Xu
, X.
, Song
, A.
, Ni
, D.
, Li
, H.
, Xiong
, P.
, and Zhu
, C.
, 2016
, “Visual-Haptic Aid Teleoperation Based on 3-D Environment Modeling and Updating
,” IEEE Trans. Ind. Electron.
, 63
(10
), pp. 6419
–6428
. 10.
Lee
, G.
, Hur
, S.
, and Oh
, Y.
, 2017
, “High-Force Display Capability and Wide Workspace With a Novel Haptic Interface
,” IEEE ASME Trans. Mechatron.
, 22
(1
), pp. 138
–148
. 11.
Steger
, R.
, Lin
, K.
, Adelstein
, B. D.
, and Kazerooni
, H.
, 2004
, “Design of a Passively Balanced Spatial Linkage Haptic Interface
,” ASME J. Mech. Des.
, 126
(6
), pp. 984
–991
. 12.
Tobergte
, A.
, and Helmer
, P.
, 2013
, “A Disturbance Observer for the Sigma.7 Haptic Device
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Tokyo, Japan
, Nov. 3–7
, pp. 4964
–4969
.13.
Taati
, B.
, Tahmasebi
, A. M.
, and Hashtrudi-Zaad
, K.
, 2008
, “Experimental Identification and Analysis of the Dynamics of a PHANTOM Premium 1.5A Haptic Device
,” Pres. Teleop. Virt. Environ.
, 17
(4
), pp. 327
–343
. 14.
Chablat
, D.
, and Wenger
, P.
, 2007
, “A Six Degree-of-Freedom Haptic Device Based on the Orthoglide and a Hybrid Agile Eye
,” arXiv: Robotics.
15.
Stewart
, D.
, 1966
, “A Platform With Six Degrees of Freedom
,” Aircr. Eng.
, 38
(4
), pp. 30
–35
. 16.
Yoon
, J. W.
, Ryu
, J.
, and Hwang
, Y. K.
, 2010
, “Optimum Design of 6-DOF Parallel Manipulator With Translational/Rotational Workspaces for Haptic Device Application
,” J. Mech. Sci. Technol.
, 24
(5
), pp. 1151
–1162
. 17.
Arata
, J.
, Ikedo
, N.
, and Fujimoto
, H.
, 2012
, “New Multi-D.O.F. Haptic Device Using a Parallel Mechanism With a Wide Rotational Working Area
,” Adv. Robot.
, 26
(1
), pp. 121
–135
. 18.
Vulliez
, M.
, Zeghloul
, S.
, and Khatib
, O.
, 2018
, “Design Strategy and Issues of the Delthaptic, a New 6-DOF Parallel Haptic Device
,” Mech. Mach. Theory
, 128
, pp. 395
–411
. 19.
Vu
, M. H.
, and Na
, U. J.
, 2011
, “A New 6-DOF Haptic Device for Teleoperation of 6-DOF Serial Robots
,” IEEE Trans. Instrum. Meas.
, 60
(11
), pp. 3510
–3523
. 20.
Wang
, C.
, Fang
, Y.
, and Guo
, S.
, 2016
, “Design and Analysis of 3R2T and 3R3T Parallel Mechanisms With High Rotational Capability
,” ASME J. Mech. Rob.
, 8
(1
), p. 011004
. 21.
Haouas
, W.
, Dahmouche
, R.
, Le Fort-Piat
, N.
, and Laurent
, G. J.
, 2018
, “A New Seven Degrees-of-Freedom Parallel Robot With a Foldable Platform
,” ASME J. Mech. Robot.
, 10
(4
), p. 045001
. 22.
Aginaga
, J.
, Iriarte
, X.
, Plaza
, A.
, and Mata
, V.
, 2018
, “Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation
,” ASME J. Mech. Des.
, 140
(9
), p. 092304
. 23.
Lambert
, P.
, and Herder
, J. L.
, 2016
, “Parallel Robots With Configurable Platforms: Fundamental Aspects of a New Class of Robotic Architectures
,” Proc. Inst. Mech. Eng., Part C
, 230
(3
), pp. 463
–472
. 24.
Lambert
, P.
, and Herder
, J. L.
, 2019
, “A 7-DOF Redundantly Actuated Parallel Haptic Device Combining 6-DOF Manipulation and 1-DOF Grasping
,” Mech. Mach. Theory
, 134
, pp. 349
–364
. 25.
Kim
, H. W.
, Lee
, J. H.
, Suh
, I. H.
, and Yi
, B. J.
, 2005
, “Comparative Study and Experimental Verification of Singular-Free Algorithms for a 6 DOF Parallel Haptic Device
,” Mechatronics
, 15
(4
), pp. 403
–422
. 26.
Luces
, M.
, Mills
, J. K.
, and Benhabib
, B.
, 2017
, “A Review of Redundant Parallel Kinematic Mechanisms
,” J. Intell. Robot. Syst.
, 86
(2
), pp. 175
–198
. 27.
Liu
, G.
, Wang
, Y.
, Zhang
, Y.
, and Xie
, Z.
, 2015
, “Real-Time Solution of the Forward Kinematics for a Parallel Haptic Device Using a Numerical Approach Based on Neural Networks
,” J. Mech. Sci. Technol.
, 29
(6
), pp. 2487
–2499
. 28.
Ahmad
, A.
, Andersson
, K.
, and Sellgren
, U.
, 2014
, “A Model-Based and Simulation-Driven Methodology for Design of Haptic Devices
,” Mechatronics
, 24
(7
), pp. 805
–818
. 29.
Boanta
, C.
, and Csiszar
, A.
, 2017
, “Optimal Design of a Parallel Structure Used as a Haptic Interface
,” Mech. Mach. Theory
, 116
, pp. 69
–88
. 30.
Lee
, J. H.
, Eom
, K. S.
, Yi
, B. J.
, and Suh
, I. H.
, 2006
, “Design of a New 6-DOF Parallel Haptic Device
,” Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164)
, Seoul, South Korea
, May 21–26
, IEEE
, pp. 886
–891
.31.
Cardou
, P.
, Bouchard
, S.
, and Gosselin
, C.
, 2010
, “Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,” IEEE Trans. Robot.
, 26
(1
), pp. 166
–173
. 32.
Khan
, S.
, Andersson
, K.
, and Wikander
, J.
, 2015
, “Jacobian Matrix Normalization—A Comparison of Different Approaches in the Context of Multi-objective Optimization of 6-DOF Haptic Devices
,” J. Intell. Robot. Syst.
, 79
(1
), pp. 87
–100
. 33.
Kim
, S. H.
, Jeon
, D.
, Shin
, H. P.
, In
, W.
, and Kim
, J.
, 2009
, “Design and Analysis of Decoupled Parallel Mechanism With Redundant Actuator
,” Int. J. Precis. Eng. Manuf.
, 10
(4
), pp. 93
–99
. Copyright © 2021 by ASME
You do not currently have access to this content.