Abstract
Deployable Euler spiral connectors (DESCs) are introduced as compliant deployable flexures that can span gaps between segments in a mechanism and then lay flat when under strain in a stowed position. This paper presents models of Euler spiral beams combined in series and parallel that can be used to design compact compliant mechanisms. Constraints on the flexure parameters of DESCs are also presented. Analytic models developed for the force-deflection behavior and stress were compared to finite element analysis and experimental data. A spinal implant and a linear ratcheting system are presented as illustrative applications of DESCs.
Issue Section:
Research Papers
References
1.
Howell
, L. L.
, 2001
, Compliant Mechanisms
, John Wiley & Sons
, New York
.2.
Qiu
, C.
, Aminzadeh
, V.
, and Dai
, J. S.
, 2013
, “Kinematic Analysis and Stiffness Validation of Origami Cartons
,” ASME J. Mech. Des.
, 135
(11
), p. 111004
. 3.
DeFigueiredo
, B.
, Pehrson
, N. A.
, Tolman
, K.
, Crampton
, E.
, Magleby
, S. P.
, and Howell
, L. L.
, 2019
, “Origami-Based Design of Conceal-and-Reveal Systems
,” ASME J. Mech. Rob.
, 11
(2
), p. 020904
. 4.
Hu
, Y.
, Zhou
, Y.
, and Liang
, H.
, 2021
, “Constructing Rigid-Foldable Generalized Miura-Ori Tessellations for Curved Surfaces
,” ASME J. Mech. Rob.
, 13
(1
), p. 011017
. 5.
Qiao
, Q.
, Yuan
, J.
, Shi
, Y.
, Ning
, X.
, and Wang
, F.
, 2017
, “Structure, Design, and Modeling of An Origami-Inspired Pneumatic Solar Tracking System for the NPU-Phonesat
,” ASME J. Mech. Rob.
, 9
(1
), p. 011004
. 6.
Xu
, Y.
, Chen
, L.
, Liu
, W.
, Yao
, J.
, Zhu
, J.
, and Zhao
, Y.
, 2018
, “Type Synthesis of the Deployable Mechanisms for the Truss Antenna Using the Method of Adding Constraint Chains
,” ASME J. Mech. Rob.
, 10
(4
), p. 041002
. 7.
Pehrson
, N. A.
, Ames
, D. C.
, Smith
, S. P.
, Magleby
, S. P.
, and Arya
, M.
, 2020
, “Self-deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,” AIAA J.
, 58
(7
), pp. 3221
–3228
.8.
Maanasa
, V.
, and Reddy
, S. R. L.
, 2014
, “Origami-Innovative Structural Forms and Applications in Disaster Management
,” Int. J. Curr. Eng. Technol.
, 4
(5
), pp. 3431
–3436
.9.
Deleo
, A. A.
, O’Neil
, J.
, Yasuda
, H.
, Salviato
, M.
, and Yang
, J.
, 2020
, “Origami-Based Deployable Structures Made of Carbon Fiber Reinforced Polymer Composites
,” Compos. Sci. Technol.
, 191
(11
), p. 108060
. 10.
Felton
, S.
, Tolley
, M.
, Demaine
, E.
, Rus
, D.
, and Wood
, R.
, 2014
, “A Method for Building Self-Folding Machines
,” Science
, 345
(6197
), pp. 644
–646
. 11.
Kalafat
, M. A.
, Sevinç
, H.
, Samankan
, S.
, Altınkaynak
, A.
, and Temel
, Z.
, 2021
, “A Novel Origami-Inspired Delta Mechanism With Flat Parallelogram Joints
,” ASME J. Mech. Rob.
, 13
(2
), p. 021005
. 12.
Edmondson
, B.
, Bowen
, L.
, Grames
, C.
, Magleby
, S.
, Howell
, L.
, and Bateman
, T.
, 2013
, “Oriceps: Origami-Inspired Forceps
,” Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
, Snowbird, UT
, Sept. 16–18
, SMASIS2013-3299.13.
Xu
, Y.
, Chen
, Y.
, Liu
, W.
, Ma
, X.
, Yao
, J.
, and Zhao
, Y.
, 2020
, “Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,” ASME J. Mech. Rob.
, 12
(1
), p. 011010
. 14.
An
, N.
, Li
, M.
, and Zhou
, J.
, 2020
, “Modeling SMA-Enabled Soft Deployable Structures for Kirigami/Origami Reflectors
,” Int. J. Mech. Sci.
, 180
(9
), p. 105753
. 15.
Taylor
, A.
, Miller
, M.
, Fok
, M.
, Nilsson
, K.
, and Tse
, Z. T. H.
, 2016
, “Intracardiac Magnetic Resonance Imaging Catheter With Origami Deployable Mechanisms
,” ASME J. Med. Devices
, 10
(2
), p. 020957
. 16.
Kuribayashi
, K.
, Tsuchiya
, K.
, You
, Z.
, Tomus
, D.
, Umemoto
, M.
, Ito
, T.
, and Sasaki
, M.
, 2006
, “Self-Deployable Origami Stent Grafts As a Biomedical Application of Ni-Rich Tini Shape Memory Alloy Foil
,” Mater. Sci. Eng. A
, 419
(1–2
), pp. 131
–137
. 17.
Sargent
, B.
, Butler
, J.
, Seymour
, K.
, Bailey
, D.
, Jensen
, B.
, Magleby
, S.
, and Howell
, L.
, 2020
, “An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,” ASME J. Mech. Rob.
, 12
(4
), p. 041005
. 18.
Ranzani
, T.
, Russo
, S.
, Schwab
, F.
, Walsh
, C. J.
, and Wood
, R. J.
, 2017
, “Deployable Stabilization Mechanisms for Endoscopic Procedures
,” 2017 IEEE International Conference on Robotics and Automation (ICRA)
, Singapore
, May 29–June 3
, IEEE, pp. 1125
–1131
.19.
Gafford
, J.
, Ding
, Y.
, Harris
, A.
, McKenna
, T.
, Polygerinos
, P.
, Holland
, D.
, Walsh
, C.
, and Moser
, A.
, 2015
, “Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,” ASME J. Mech. Rob.
, 7
(2
), p. 021006
. 20.
Bobbert
, F.
, Janbaz
, S.
, van Manen
, T.
, Li
, Y.
, and Zadpoor
, A.
, 2020
, “Russian Doll Deployable Meta-implants: Fusion of Kirigami, Origami, and Multi-Stability
,” Mater. Des.
, 191
, p. 108624
. 21.
Baek
, S.-M.
, Yim
, S.
, Chae
, S.-H.
, Lee
, D.-Y.
, and Cho
, K.-J.
, 2020
, “Ladybird Beetle-Inspired Compliant Origami
,” Sci. Rob.
, 5
(41
), p. eaaz6262
.22.
Seymour
, K.
, Burrow
, D.
, Avila
, A.
, Bateman
, T.
, Morgan
, D. C.
, Magleby
, S. P.
, and Howell
, L. L.
, 2018
, “Origami-based Deployable Ballistic Barrier
,” Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education
, Oxford, UK
, Sept. 4–7
.23.
Tolman
, K. A.
, Crampton
, E. B.
, Stucki
, C.
, Maynes
, D.
, and Howell
, L. L.
, 2018
, “Design of An Origami-Inspired Deployable Aerodynamic Locomotive Fairing
,” Proceedings of the 7th International Meeting on Origami in Science, Mathematics, and Education
, UK
, Sept. 4–7
.24.
Chen
, B.
, Hu
, J.
, Chen
, W.
, and Qi
, J.
, 2020
, “Geometrical Analysis of Connecting Beam Mandala: A Planar Deployable Mechanism
,” ASME J. Mech. Rob.
, 12
(1
), p. 011009
. 25.
Banerjee
, H.
, Pusalkar
, N.
, and Ren
, H.
, 2018
, “Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,” ASME J. Mech. Rob.
, 10
(6
), p. 064501
. 26.
Guang
, C.
, and Yang
, Y.
, 2018
, “Single-vertex Multicrease Rigid Origami With Nonzero Thickness and Its Transformation Into Deployable Mechanisms
,” ASME J. Mech. Rob.
, 10
(1
), p. 011010
. 27.
Badagavi
, P.
, Pai
, V.
, and Chinta
, A.
, 2017
, “Use of Origami in Space Science and Various Other Fields of Science
,” Second IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT)
, Bangalore, India
, May 19–20
, pp. 628
–632
.28.
Morgan
, J.
, Magleby
, S. P.
, and Howell
, L. L.
, 2016
, “An Approach to Designing Origami-Adapted Aerospace Mechanisms
,” ASME J. Mech. Des.
, 138
(5
), p. 052301
. 29.
Thrall
, A.
, and Quaglia
, C.
, 2014
, “Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the US Military
,” Eng. Struct.
, 59
, pp. 686
–692
. 30.
Peraza-Hernandez
, E. A.
, Hartl
, D. J.
, Malak Jr
, R. J.
, and Lagoudas
, D. C.
, 2014
, “Origami-Inspired Active Structures: A Synthesis and Review
,” Smart Mater. Struct.
, 23
(9
), p. 094001
. 31.
Banerjee
, H.
, Li
, T. K.
, Ponraj
, G.
, Kirthika
, S. K.
, Lim
, C. M.
, and Ren
, H.
, 2020
, “Origami-Layer-Jamming Deployable Surgical Retractor With Variable Stiffness and Tactile Sensing
,” ASME J. Mech. Rob.
, 12
(3
), p. 031010
. 32.
Zhao
, N.
, and Harne
, R. L.
, 2021
, “Reconfigurable Acoustic Arrays With Deployable Structure Based on a Hoberman–miura System Synthesis
,” ASME J. Mech. Des.
, 143
(6
), p. 063301
. 33.
Zhuo
, S.
, Zhang
, G.
, Feng
, X.
, Jiang
, H.
, Shi
, J.
, Liu
, H.
, and Li
, H.
, 2016
, “Multiple Shape Memory Polymers for Self-Deployable Device
,” RSC Adv.
, 6
(56
), pp. 50581
–50586
. 34.
Song
, X.
, Guo
, H.
, Chen
, J.
, Yuan
, W.
, and Xu
, Y.
, 2021
, “Double-Layer Deployable Mechanical Network Constructed of Threefold-Symmetric Bricard Linkages and Sarrus Linkages
,” ASME J. Mech. Rob.
, 13
(6
), p. 061010
. 35.
Wang
, J.
, and Kong
, X.
, 2018
, “A Novel Method for Constructing Multi-Mode Deployable Polyhedron Mechanisms Using Symmetric Spatial RRR Compositional Units
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Quebec City, Canada
, Aug. 26
.36.
Yang
, F.
, You
, Z.
, and Chen
, Y.
, 2020
, “Foldable Hexagonal Structures Based on the Threefold-Symmetric Bricard Linkage
,” ASME J. Mech. Rob.
, 12
(1
), pp. 011012
. 37.
Alfattani
, R.
, and Lusk
, C.
, 2020
, “Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability
,” ASME J. Mech. Rob.
, 12
(5
), p. 051003
. 38.
Yang
, F.
, Gao
, Y.
, Lu
, S.
, and Chen
, K.
, 2021
, “A Mobile Bennett Network Constructed With Identical Square Panels
,” ASME J. Mech. Des.
, 143
(11
), p. 113301
. 39.
Suthar
, B.
, and Jung
, S.
, 2021
, “Design and Bending Analysis of a Metamorphic Parallel Twisted-Scissor Mechanism
,” ASME J. Mech. Rob.
, 13
(4
), p. 040905
. 40.
Nelson
, T. G.
, Zimmerman
, T. K.
, Magleby
, S. P.
, Lang
, R. J.
, and Howell
, L. L.
, 2019
, “Developable Mechanisms on Developable Surfaces
,” Sci. Rob.
, 4
(27
), pp. eaau5171
.41.
Puig
, L.
, Barton
, A.
, and Rando
, N.
, 2010
, “A Review on Large Deployable Structures for Astrophysics Missions
,” Acta Astronautica
, 67
(1–2
), pp. 12
–26
. 42.
Zhao
, J.-S.
, Chu
, F.
, and Feng
, Z.-J.
, 2009
, “The Mechanism Theory and Application of Deployable Structures Based on SLE
,” Mech. Mach. Theory
, 44
(2
), pp. 324
–335
. 43.
Langbecker
, T.
, 1999
, “Kinematic Analysis of Deployable Scissor Structures
,” Int. J. Space Struct.
, 14
(1
), pp. 1
–15
. 44.
Nelson
, T. G.
, Baldelomar Pinto
, L. M.
, Bruton
, J. T.
, Deng
, Z.
, Nelson
, C. G.
, and Howell
, L. L.
, 2021
, “Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints
,” ASME J. Mech. Rob.
, 13
(3
), p. 031003
. 45.
She
, Y.
, Gu
, Z.
, Song
, S.
, Su
, H.-J.
, and Wang
, J.
, 2021
, “Design, Modeling, and Manufacturing of a Variable Lateral Stiffness Arm Via Shape Morphing Mechanisms
,” ASME J. Mech. Rob.
, 13
(3
), p. 031020
. 46.
Qaiser
, Z.
, and Johnson
, S.
, 2021
, “Generalized Spiral Spring: A Bioinspired Tunable Stiffness Mechanism for Linear Response With High Resolution
,” ASME J. Mech. Rob.
, 13
(1
), p. 011007
. 47.
Levien
, R. L.
, 2009
, “From Spiral to Spline: Optimal Techniques in Interactive Curve Design
,” Ph.D. thesis
, EECS Department, University of California
, Berkeley, CA
.48.
Yellowhorse
, A.
, and Howell
, L. L.
, 2018
, “Deployable Lenticular Stiffeners for Origami-Inspired Mechanisms
,” Mech. Des. Struct. Mach.
, 46
(5
), pp. 634
–649
. 49.
Alhajyaseen
, W. K.
, Asano
, M.
, Nakamura
, H.
, and Tan
, D. M.
, 2013
, “Stochastic Approach for Modeling the Effects of Intersection Geometry on Turning Vehicle Paths
,” Transportation Res. Part C: Emerging Technol.
, 32
, pp. 179
–192
. 50.
Marzbani
, H.
, Jazar
, R. N.
, and Fard
, M.
, 2015
, “Better Road Design Using Clothoids,” Sustainable Automotive Technologies 2014, Proceedings of the 6th ICSAT
, I.
Denbratt
, A.
Subic
, and J.
Wellnitz
, eds., Springer
, Cham, Switzerland
, pp. 25
–40
.51.
Kimia
, B. B.
, Frankel
, I.
, and Popescu
, A. -M.
, 2003
, “Euler Spiral for Shape Completion
,” Int. J. Comput. Vision
, 54
(1
), pp. 159
–182
. 52.
Harary
, G.
, and Tal
, A.
, 2012
, “3d Euler Spirals for 3D Curve Completion
,” Comput. Geometry
, 45
(3
), pp. 115
–126
. 53.
ASTM International
, 2017
, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
, ASTM International
, West Conshohocken, PA
, Standard ASTM D790-17.54.
McDermott
, K. W. I. W. H.
, Freeman
, W. J. A.
, and Elixhauser
, A. A.
, 2017
, Overview of Operating Room Procedures During Inpatient Stays in U.S. Hospitals, 2014. HCUP Statistical Brief #233. Agency for Healthcare Research and Quality, Rockville, MD. On the WWW, December
. www.hcup-us.ahrq.gov/reports/statbriefs/sb233-Operating-Room-Procedures-United-States-2014.pdf55.
Rajaee
, S. S.
, Bae
, H. W.
, Kanim
, L. E.
, and Delamarter
, R. B.
, 2012
, “Spinal Fusion in the United States: Analysis of Trends From 1998 to 2008
,” Spine
, 37
(1
), pp. 67
–76
. 56.
Peck
, J. H.
, Kavlock
, K. D.
, Showalter
, B. L.
, Ferrell
, B. M.
, Peck
, D. G.
, and Dmitriev
, A. E.
, 2018
, “Mechanical Performance of Lumbar Intervertebral Body Fusion Devices: An Analysis of Data Submitted to the Food and Drug Administration
,” J. Biomech.
, 78
, pp. 87
–93
. 57.
Goz
, V.
, Weinreb
, J. H.
, Schwab
, F.
, Lafage
, V.
, and Errico
, T. J.
, 2014
, “Comparison of Complications, Costs, and Length of Stay of Three Different Lumbar Interbody Fusion Techniques: An Analysis of the Nationwide Inpatient Sample Database
,” Spine J.
, 14
(9
), pp. 2019
–2027
. 58.
Ozgur
, B. M.
, Aryan
, H. E.
, Pimenta
, L.
, and Taylor
, W. R.
, 2006
, “Extreme Lateral Interbody Fusion (xlif): a Novel Surgical Technique for Anterior Lumbar Interbody Fusion
,” Spine J.
, 6
(4
), pp. 435
–443
. 59.
Kao
, T.-H.
, Wu
, C.-H.
, Chou
, Y.-C.
, Chen
, H.-T.
, Chen
, W.-H.
, and Tsou
, H.-K.
, 2014
, “Risk Factors for Subsidence in Anterior Cervical Fusion With Stand-Alone Polyetheretherketone (peek) Cages: A Review of 82 Cases and 182 Levels
,” Arch. Orthop. Trauma Surg.
, 134
(10
), pp. 1343
–1351
. 60.
Halverson
, P. A.
, Bowden
, A. E.
, and Howell
, L. L.
, 2012
, “A Compliant-Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,” Int. J. Spine Surg.
, 6
(1
), pp. 78
–86
. 61.
Dodgen
, E.
, Stratton
, E.
, Bowden
, A.
, and Howell
, L.
, 2012
, “Spinal Implant Development, Modeling, and Testing to Achieve Customizable and Nonlinear Stiffness
,” ASME J. Med. Devices
, 6
(2
), p. 021010
. 62.
Polymaker
, 2018
, PolyFlex™ TPU95 Technical Data Sheet
, Nov. 2018. Version 4.0.63.
Masni-Azian
, and Tanaka
, M.
, 2017
, “Statistical Factorial Analysis Approach for Parameter Calibration on Material Nonlinearity of Intervertebral Disc Finite Element Model
,” Comput. Methods Biomech. Biomed. Eng.
, 20
(10
), pp. 1066
–1076
. 64.
Tolman
, S. S.
, Delimont
, I. L.
, Howell
, L. L.
, and Fullwood
, D. T.
, 2014
, “Material Selection for Elastic Energy Absorption in Origami-Inspired Compliant Corrugations
,” Smart Mater. Struct.
, 23
(9
), p. 094010
. Copyright © 2021 by ASME
You do not currently have access to this content.