Abstract

Deployable Euler spiral connectors (DESCs) are introduced as compliant deployable flexures that can span gaps between segments in a mechanism and then lay flat when under strain in a stowed position. This paper presents models of Euler spiral beams combined in series and parallel that can be used to design compact compliant mechanisms. Constraints on the flexure parameters of DESCs are also presented. Analytic models developed for the force-deflection behavior and stress were compared to finite element analysis and experimental data. A spinal implant and a linear ratcheting system are presented as illustrative applications of DESCs.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.
3.
DeFigueiredo
,
B.
,
Pehrson
,
N. A.
,
Tolman
,
K.
,
Crampton
,
E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Origami-Based Design of Conceal-and-Reveal Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020904
.
4.
Hu
,
Y.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2021
, “
Constructing Rigid-Foldable Generalized Miura-Ori Tessellations for Curved Surfaces
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011017
.
5.
Qiao
,
Q.
,
Yuan
,
J.
,
Shi
,
Y.
,
Ning
,
X.
, and
Wang
,
F.
,
2017
, “
Structure, Design, and Modeling of An Origami-Inspired Pneumatic Solar Tracking System for the NPU-Phonesat
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011004
.
6.
Xu
,
Y.
,
Chen
,
L.
,
Liu
,
W.
,
Yao
,
J.
,
Zhu
,
J.
, and
Zhao
,
Y.
,
2018
, “
Type Synthesis of the Deployable Mechanisms for the Truss Antenna Using the Method of Adding Constraint Chains
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041002
.
7.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA J.
,
58
(
7
), pp.
3221
3228
.
8.
Maanasa
,
V.
, and
Reddy
,
S. R. L.
,
2014
, “
Origami-Innovative Structural Forms and Applications in Disaster Management
,”
Int. J. Curr. Eng. Technol.
,
4
(
5
), pp.
3431
3436
.
9.
Deleo
,
A. A.
,
O’Neil
,
J.
,
Yasuda
,
H.
,
Salviato
,
M.
, and
Yang
,
J.
,
2020
, “
Origami-Based Deployable Structures Made of Carbon Fiber Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
191
(
11
), p.
108060
.
10.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
11.
Kalafat
,
M. A.
,
Sevinç
,
H.
,
Samankan
,
S.
,
Altınkaynak
,
A.
, and
Temel
,
Z.
,
2021
, “
A Novel Origami-Inspired Delta Mechanism With Flat Parallelogram Joints
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021005
.
12.
Edmondson
,
B.
,
Bowen
,
L.
,
Grames
,
C.
,
Magleby
,
S.
,
Howell
,
L.
, and
Bateman
,
T.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 16–18
, SMASIS2013-3299.
13.
Xu
,
Y.
,
Chen
,
Y.
,
Liu
,
W.
,
Ma
,
X.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
14.
An
,
N.
,
Li
,
M.
, and
Zhou
,
J.
,
2020
, “
Modeling SMA-Enabled Soft Deployable Structures for Kirigami/Origami Reflectors
,”
Int. J. Mech. Sci.
,
180
(
9
), p.
105753
.
15.
Taylor
,
A.
,
Miller
,
M.
,
Fok
,
M.
,
Nilsson
,
K.
, and
Tse
,
Z. T. H.
,
2016
, “
Intracardiac Magnetic Resonance Imaging Catheter With Origami Deployable Mechanisms
,”
ASME J. Med. Devices
,
10
(
2
), p.
020957
.
16.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts As a Biomedical Application of Ni-Rich Tini Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
17.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.
18.
Ranzani
,
T.
,
Russo
,
S.
,
Schwab
,
F.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2017
, “
Deployable Stabilization Mechanisms for Endoscopic Procedures
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
1125
1131
.
19.
Gafford
,
J.
,
Ding
,
Y.
,
Harris
,
A.
,
McKenna
,
T.
,
Polygerinos
,
P.
,
Holland
,
D.
,
Walsh
,
C.
, and
Moser
,
A.
,
2015
, “
Shape Deposition Manufacturing of a Soft, Atraumatic, and Deployable Surgical Grasper
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021006
.
20.
Bobbert
,
F.
,
Janbaz
,
S.
,
van Manen
,
T.
,
Li
,
Y.
, and
Zadpoor
,
A.
,
2020
, “
Russian Doll Deployable Meta-implants: Fusion of Kirigami, Origami, and Multi-Stability
,”
Mater. Des.
,
191
, p.
108624
.
21.
Baek
,
S.-M.
,
Yim
,
S.
,
Chae
,
S.-H.
,
Lee
,
D.-Y.
, and
Cho
,
K.-J.
,
2020
, “
Ladybird Beetle-Inspired Compliant Origami
,”
Sci. Rob.
,
5
(
41
), p.
eaaz6262
.
22.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami-based Deployable Ballistic Barrier
,”
Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education
,
Oxford, UK
,
Sept. 4–7
.
23.
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Stucki
,
C.
,
Maynes
,
D.
, and
Howell
,
L. L.
,
2018
, “
Design of An Origami-Inspired Deployable Aerodynamic Locomotive Fairing
,”
Proceedings of the 7th International Meeting on Origami in Science, Mathematics, and Education
,
UK
,
Sept. 4–7
.
24.
Chen
,
B.
,
Hu
,
J.
,
Chen
,
W.
, and
Qi
,
J.
,
2020
, “
Geometrical Analysis of Connecting Beam Mandala: A Planar Deployable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011009
.
25.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
26.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
Single-vertex Multicrease Rigid Origami With Nonzero Thickness and Its Transformation Into Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011010
.
27.
Badagavi
,
P.
,
Pai
,
V.
, and
Chinta
,
A.
,
2017
, “
Use of Origami in Space Science and Various Other Fields of Science
,”
Second IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT)
,
Bangalore, India
,
May 19–20
, pp.
628
632
.
28.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
29.
Thrall
,
A.
, and
Quaglia
,
C.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the US Military
,”
Eng. Struct.
,
59
, pp.
686
692
.
30.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak Jr
,
R. J.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.
31.
Banerjee
,
H.
,
Li
,
T. K.
,
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Origami-Layer-Jamming Deployable Surgical Retractor With Variable Stiffness and Tactile Sensing
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031010
.
32.
Zhao
,
N.
, and
Harne
,
R. L.
,
2021
, “
Reconfigurable Acoustic Arrays With Deployable Structure Based on a Hoberman–miura System Synthesis
,”
ASME J. Mech. Des.
,
143
(
6
), p.
063301
.
33.
Zhuo
,
S.
,
Zhang
,
G.
,
Feng
,
X.
,
Jiang
,
H.
,
Shi
,
J.
,
Liu
,
H.
, and
Li
,
H.
,
2016
, “
Multiple Shape Memory Polymers for Self-Deployable Device
,”
RSC Adv.
,
6
(
56
), pp.
50581
50586
.
34.
Song
,
X.
,
Guo
,
H.
,
Chen
,
J.
,
Yuan
,
W.
, and
Xu
,
Y.
,
2021
, “
Double-Layer Deployable Mechanical Network Constructed of Threefold-Symmetric Bricard Linkages and Sarrus Linkages
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061010
.
35.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
A Novel Method for Constructing Multi-Mode Deployable Polyhedron Mechanisms Using Symmetric Spatial RRR Compositional Units
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26
.
36.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Foldable Hexagonal Structures Based on the Threefold-Symmetric Bricard Linkage
,”
ASME J. Mech. Rob.
,
12
(
1
), pp.
011012
.
37.
Alfattani
,
R.
, and
Lusk
,
C.
,
2020
, “
Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051003
.
38.
Yang
,
F.
,
Gao
,
Y.
,
Lu
,
S.
, and
Chen
,
K.
,
2021
, “
A Mobile Bennett Network Constructed With Identical Square Panels
,”
ASME J. Mech. Des.
,
143
(
11
), p.
113301
.
39.
Suthar
,
B.
, and
Jung
,
S.
,
2021
, “
Design and Bending Analysis of a Metamorphic Parallel Twisted-Scissor Mechanism
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040905
.
40.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Rob.
,
4
(
27
), pp.
eaau5171
.
41.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronautica
,
67
(
1–2
), pp.
12
26
.
42.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2009
, “
The Mechanism Theory and Application of Deployable Structures Based on SLE
,”
Mech. Mach. Theory
,
44
(
2
), pp.
324
335
.
43.
Langbecker
,
T.
,
1999
, “
Kinematic Analysis of Deployable Scissor Structures
,”
Int. J. Space Struct.
,
14
(
1
), pp.
1
15
.
44.
Nelson
,
T. G.
,
Baldelomar Pinto
,
L. M.
,
Bruton
,
J. T.
,
Deng
,
Z.
,
Nelson
,
C. G.
, and
Howell
,
L. L.
,
2021
, “
Deployable Convex Generalized Cylindrical Surfaces Using Torsional Joints
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031003
.
45.
She
,
Y.
,
Gu
,
Z.
,
Song
,
S.
,
Su
,
H.-J.
, and
Wang
,
J.
,
2021
, “
Design, Modeling, and Manufacturing of a Variable Lateral Stiffness Arm Via Shape Morphing Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031020
.
46.
Qaiser
,
Z.
, and
Johnson
,
S.
,
2021
, “
Generalized Spiral Spring: A Bioinspired Tunable Stiffness Mechanism for Linear Response With High Resolution
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011007
.
47.
Levien
,
R. L.
,
2009
, “
From Spiral to Spline: Optimal Techniques in Interactive Curve Design
,”
Ph.D. thesis
,
EECS Department, University of California
,
Berkeley, CA
.
48.
Yellowhorse
,
A.
, and
Howell
,
L. L.
,
2018
, “
Deployable Lenticular Stiffeners for Origami-Inspired Mechanisms
,”
Mech. Des. Struct. Mach.
,
46
(
5
), pp.
634
649
.
49.
Alhajyaseen
,
W. K.
,
Asano
,
M.
,
Nakamura
,
H.
, and
Tan
,
D. M.
,
2013
, “
Stochastic Approach for Modeling the Effects of Intersection Geometry on Turning Vehicle Paths
,”
Transportation Res. Part C: Emerging Technol.
,
32
, pp.
179
192
.
50.
Marzbani
,
H.
,
Jazar
,
R. N.
, and
Fard
,
M.
,
2015
, “Better Road Design Using Clothoids,”
Sustainable Automotive Technologies 2014, Proceedings of the 6th ICSAT
,
I.
Denbratt
,
A.
Subic
, and
J.
Wellnitz
, eds.,
Springer
,
Cham, Switzerland
, pp.
25
40
.
51.
Kimia
,
B. B.
,
Frankel
,
I.
, and
Popescu
,
A. -M.
,
2003
, “
Euler Spiral for Shape Completion
,”
Int. J. Comput. Vision
,
54
(
1
), pp.
159
182
.
52.
Harary
,
G.
, and
Tal
,
A.
,
2012
, “
3d Euler Spirals for 3D Curve Completion
,”
Comput. Geometry
,
45
(
3
), pp.
115
126
.
53.
ASTM International
,
2017
,
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
,
ASTM International
,
West Conshohocken, PA
, Standard ASTM D790-17.
54.
McDermott
,
K. W. I. W. H.
,
Freeman
,
W. J. A.
, and
Elixhauser
,
A. A.
,
2017
,
Overview of Operating Room Procedures During Inpatient Stays in U.S. Hospitals, 2014. HCUP Statistical Brief #233. Agency for Healthcare Research and Quality, Rockville, MD. On the WWW, December
. www.hcup-us.ahrq.gov/reports/statbriefs/sb233-Operating-Room-Procedures-United-States-2014.pdf
55.
Rajaee
,
S. S.
,
Bae
,
H. W.
,
Kanim
,
L. E.
, and
Delamarter
,
R. B.
,
2012
, “
Spinal Fusion in the United States: Analysis of Trends From 1998 to 2008
,”
Spine
,
37
(
1
), pp.
67
76
.
56.
Peck
,
J. H.
,
Kavlock
,
K. D.
,
Showalter
,
B. L.
,
Ferrell
,
B. M.
,
Peck
,
D. G.
, and
Dmitriev
,
A. E.
,
2018
, “
Mechanical Performance of Lumbar Intervertebral Body Fusion Devices: An Analysis of Data Submitted to the Food and Drug Administration
,”
J. Biomech.
,
78
, pp.
87
93
.
57.
Goz
,
V.
,
Weinreb
,
J. H.
,
Schwab
,
F.
,
Lafage
,
V.
, and
Errico
,
T. J.
,
2014
, “
Comparison of Complications, Costs, and Length of Stay of Three Different Lumbar Interbody Fusion Techniques: An Analysis of the Nationwide Inpatient Sample Database
,”
Spine J.
,
14
(
9
), pp.
2019
2027
.
58.
Ozgur
,
B. M.
,
Aryan
,
H. E.
,
Pimenta
,
L.
, and
Taylor
,
W. R.
,
2006
, “
Extreme Lateral Interbody Fusion (xlif): a Novel Surgical Technique for Anterior Lumbar Interbody Fusion
,”
Spine J.
,
6
(
4
), pp.
435
443
.
59.
Kao
,
T.-H.
,
Wu
,
C.-H.
,
Chou
,
Y.-C.
,
Chen
,
H.-T.
,
Chen
,
W.-H.
, and
Tsou
,
H.-K.
,
2014
, “
Risk Factors for Subsidence in Anterior Cervical Fusion With Stand-Alone Polyetheretherketone (peek) Cages: A Review of 82 Cases and 182 Levels
,”
Arch. Orthop. Trauma Surg.
,
134
(
10
), pp.
1343
1351
.
60.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
,
2012
, “
A Compliant-Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement
,”
Int. J. Spine Surg.
,
6
(
1
), pp.
78
86
.
61.
Dodgen
,
E.
,
Stratton
,
E.
,
Bowden
,
A.
, and
Howell
,
L.
,
2012
, “
Spinal Implant Development, Modeling, and Testing to Achieve Customizable and Nonlinear Stiffness
,”
ASME J. Med. Devices
,
6
(
2
), p.
021010
.
62.
Polymaker
,
2018
,
PolyFlex TPU95 Technical Data Sheet
, Nov. 2018. Version 4.0.
63.
Masni-Azian
, and
Tanaka
,
M.
,
2017
, “
Statistical Factorial Analysis Approach for Parameter Calibration on Material Nonlinearity of Intervertebral Disc Finite Element Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
10
), pp.
1066
1076
.
64.
Tolman
,
S. S.
,
Delimont
,
I. L.
,
Howell
,
L. L.
, and
Fullwood
,
D. T.
,
2014
, “
Material Selection for Elastic Energy Absorption in Origami-Inspired Compliant Corrugations
,”
Smart Mater. Struct.
,
23
(
9
), p.
094010
.
You do not currently have access to this content.