Abstract

As an important branch of reconfigurable robots, extensible continuum robots are soft and light, with the flexibility of movement and high adaptability in complex environments. These robots have very broad applications in a variety of fields, including military reconnaissance, geological exploration and rescue operations. In this paper, a high folding ratio, flexible, and compact extensible continuum arm is designed using a novel combination of parallel and deployable mechanisms. We present the spherical-linkage parallel mechanism (SLPM) as a flexure hinge. The analysis suggests that the SLPM is highly flexible and meets the requirements for many DoFs (degrees-of-freedom) needed in various fields. The folding ratio of the SLPM was 72.73. Following this, we present an SLPM compliant module powered by a set of embedded shape memory alloy (SMA) springs. These can change the internal elasticity of the module as temperature changes, thereby varying the stiffness. Moreover, the control system is designed to enable real-time cooperation between multiple motors and carries out simulations for deployable motion. The extensible continuum arm prototype was manufactured and its performance was tested in complex environments. From the results, it is shown that the arm can be utilized for rescue during disasters as well as investigation and repair of aircraft engines.

References

1.
Robinson
,
G.
, and
Davies
,
J. B. C.
,
1999
, “
Continuum Robots—A State of the Art
,”
Proceedings of the 1999 IEEE International Conference on Robotics and Automation
,
Detroit, MI
,
May 10–15
, vol. 4, pp.
2849
2854
.
2.
Sujan
,
V. A.
, and
Dubowsky
,
S.
,
2004
, “
Design of a Lightweight Hyper-redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
29
39
.
3.
William
,
M.
, and
Walker
,
I. D.
,
2008
, “
Octopus-Inspired Grasp-Synergies for Continuum Manipulators
,”
Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
,
Feb. 22–25
, pp.
945
950
.
4.
Koh
,
J.
, and
Cho
,
K.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
419
429
.
5.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2015
, “
Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021014
.
6.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
7.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
NW
, 129(3), p.
124
.
8.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2013
, “
An Approach for Understanding Action Origami as Kinematic Mechanisms
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2013–13407
,
Portland, OR
.
9.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “
A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA2014)
,
Hong Kong
,
May 31–June 7
, Vol. 1137, pp.
2844
2849
.
10.
Santoso
,
J.
, and
Onal
,
C. D.
,
2020
, “
An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics
,”
Soft Rob.
,
8
(
4
), pp.
371
386
.
11.
Gao
,
G.
,
Hao
,
W.
,
Fan
,
J.
,
Xia
,
Q.
,
Li
,
L.
, and
Ren
,
H.
,
2018
, “
Study on Stretch-Retractable Single-Section Continuum Manipulator
,”
Adv. Robot.
,
33
(
1
), pp.
1
12
.
12.
Gao
,
G.
,
Hao
,
W.
,
Liu
,
J.
, and
Zheng
,
Y.
,
2019
, “
Statics Analysis of an Extensible Continuum Manipulator With Large Deflection
,”
Mech. Mach. Theory
,
141
, pp.
245
266
.
13.
Thien
,
D. N.
, and
Jessica
,
B. K.
,
2015
, “
A Tendon-Driven Continuum Robot With Extensible Sections
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2130
2135
.
14.
Chikhaoui
,
M. T.
,
Lilge
,
S.
,
Kleinschmidt
,
S.
, and
Burgner-Kahrs
,
J.
,
2019
, “
Comparison of Modeling Approaches for a Tendon Actuated Continuum Robot With Three Extensible Segments
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
989
996
.
15.
Lei
,
Y.
,
Li
,
Y.
,
Song
,
R.
, and
Du
,
F.
,
2021
, “
Development of a Novel Deployable Arm for Natural Orifice Transluminal Endoscopic Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
17
(
3
).
16.
Zhang
,
K.
,
Qiu
,
C.
, and
Dai
,
J. S.
,
2016
, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031010
.
17.
Liu
,
Y.
, and
Pinhas
,
B. T.
,
2021
, “
A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031014
.
18.
Yang
,
C. H.
,
Geng
,
S. N.
,
Walker
,
I.
,
Branson
,
D. T.
,
Liu
,
J. G.
,
Dai
,
J. S.
, and
Kang
,
R. J.
,
2020
, “
Geometric Constraint-Based Modeling and Analysis of a Novel Continuum Robot With Shape Memory Alloy Initiated Variable Stiffness
,”
Int. J. Robot. Res.
,
39
(
14
), pp.
1620
1634
.
19.
Kang
,
R. J.
,
Liu
,
Y.
,
Geng
,
S. N.
, and
Yang
,
C. H.
,
2021
, “
Modeling and Obstacle Avoidance Control of Wire-Driven Continuum Robot
,”
J. Tianjin Univ.
,
54
(
6
), pp.
651
660
.
20.
Kim
,
S. J.
,
Lee
,
D. Y.
,
Jung
,
G. P.
, and
Cho
,
K. J.
,
2018
, “
An Origami-Inspired, Self-locking Robotic Arm That Can Be Folded Flat
,”
Sci. Robot.
,
3
(
16
), p.
16
.
21.
Hu
,
F.
,
Wei
,
W.
,
Cheng
,
J.
, and
Bao
,
Y.
,
2020
, “
Origami Spring-Inspired Metamaterials and Robots: An Attempt at Fully Programmable Robotics
,”
Sci. Prog.
,
103
(
3
), p.
003685042094616
.
22.
Robertson
,
M. A.
,
Ozdemir
,
C. K.
, and
Jamie
,
P.
,
2021
, “
Soft Pneumatic Actuator-Driven Origami-Inspired Modular Robotic “Pneumagami”
,”
Int. J. Robot. Res.
,
40
(
1
), pp.
72
85
.
23.
Tanaka
,
K.
,
Mohammad
,
A. K.
,
Bruno
,
P. B.
,
Declan
,
M.
,
Zhou
,
Q.
,
Richa
,
B.
,
Ankit
,
S.
,
Heinrich
,
M. J.
, and
Matthew
,
S.
,
2020
, “
Cable-Driven Jamming of a Boundary Constrained Soft Robot
,”
Proceedings of the 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
,
May 15–July 15
, pp.
852
857
.
24.
Mete
,
M.
, and
Jamie
,
P.
,
2021
, “
Closed-Loop Position Control of a Self-Sensing 3-DoF Origami Module With Pneumatic Actuators
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
8213
8220
.
25.
Li
,
C.
,
Li
,
S.
,
Xu
,
Z.
,
Wu
,
X.
,
Liang
,
T.
, and
Shi
,
W.
,
2020
, “
Experimental Investigation and Error Analysis of High Precision FBG Displacement Sensor for Structural Health Monitoring
,”
Int. J. Struct. Stab. Dyn.
,
20
(
6
), p.
2040011
.
26.
Frohloff
,
J.
,
2020
, “
Collisions of Artificial Satellites: The Liability of States and Private Entities
,”
Air Space Law
,
45
(
3
), pp.
341
358
.
27.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing, China
.
You do not currently have access to this content.