Abstract

A laparoscopic hysterectomy has been highlighted to early diagnose uterine and cervical cancers. Reflecting these needs, commercial uterine manipulators employing a kinematic linkage system without mechanical actuators have been developed. None of them have achieved versatile movements, enabling anteversion and retroversion articulation of the uterus together with translational motion. More recently, motorized uterine manipulators capable of versatile and multifunctional movements are proposed. They have shown a strong potential to alleviate the burdens that gynecological surgeons can experience. Building on these concepts, we propose a master–slave system-based uterine manipulation robot (UMaRo). The device features a simple mechanism with a larger workspace, achieved by combining translational motion together with roll and pitch motions. The UMaRo also has an ergonomically designed uterus-shaped handle which enhances ease of use and convenience during procedures. More importantly, the master–slave system enables surgeons to operate the manipulator with less force, thereby reducing operator fatigue. A linkage mechanism allows the UMaRo to accommodate a higher load capacity, a larger workspace, and makes the device simpler. Numerical analyses are performed to determine the specifications of the UMaRo. Based on the results, the UMaRo is designed and fabricated. Then, experiments are performed in a phantom uterus model to validate the UMaRo performance. Results demonstrated a lifting force of 13 N in the pitch motion and 45 N in the roll motion, and the movement of the master–slave system was found to be well-synchronized out–inside of the phantom.

References

1.
Tarver
,
T.
,
2012
,
Cancer Facts & Figures 2012
,
American Cancer Society
,
Atlanta, GA
, p.
66
.
2.
Gahler
,
M. M. C.
,
van de Berg
,
N. N. J.
,
Rhemrev
,
J.
,
Jansen
,
F. W.
, and
van den Dobbelsteen
,
J.
,
2010
, “
Vaginal Approach for Uterus Separation During Laparoscopic Hysterectomy
,”
ASME J. Med. Devices
,
4
(
2
), p.
027514
.
3.
Henley
,
S. J.
,
Miller
,
J. W.
,
Dowling
,
N. F.
,
Benard
,
V. B.
, and
Richardson
,
L. C.
,
2018
, “
Uterine Cancer Incidence and Mortality—United States, 1999–2016
,”
Morb. Mortal. Wkly. Rep.
,
67
(
48
), pp.
1333
1338
.
4.
Park
,
J. S.
,
Choi
,
G. S.
,
Lim
,
K. H.
,
Jang
,
Y. S.
, and
Jun
,
S. H.
,
2011
, “
S052: A Comparison of Robot-Assisted, Laparoscopic, and Open Surgery in the Treatment of Rectal Cancer
,”
Surg. Endosc.
,
25
(
1
), pp.
240
248
.
5.
Poston
,
R. S.
,
Tran
,
R.
,
Collins
,
M.
,
Reynolds
,
M.
,
Connerney
,
I.
,
Reicher
,
B.
,
Zimrin
,
D.
,
Griffith
,
B. P.
, and
Bartlett
,
S. T.
,
2008
, “
Comparison of Economic and Patient Outcomes With Minimally Invasive Versus Traditional Off-Pump Coronary Artery Bypass Grafting Techniques
,”
Ann. Surg.
,
248
(
4
), p.
638
.
6.
Landeen
,
L. B.
,
Bell
,
M. C.
,
Hubert
,
H. B.
,
Bennis
,
L. Y.
,
Knutsen-Larson
,
S. S.
, and
Seshadri-Kreaden
,
U.
,
2011
, “
Clinical and Cost Comparisons for Hysterectomy Via Abdominal, Standard Laparoscopic, Vaginal and Robot-Assisted Approaches
,”
S. D. Med.
,
64
(
6
), pp.
197
203
.
7.
Lowe
,
M. P.
,
Hoekstra
,
A. V.
,
Jairam-Thodla
,
A.
,
Singh
,
D. K.
,
Buttin
,
B. M.
,
Lurain
,
J. R.
, and
Schink
,
J. C.
,
2009
, “
A Comparison of Robot-Assisted and Traditional Radical Hysterectomy for Early-Stage Cervical Cancer
,”
J. Robot. Surg.
,
3
(
1
), pp.
19
23
.
8.
Bell
,
M. C.
,
Torgerson
,
J.
,
Seshadri-Kreaden
,
U.
,
Suttle
,
A. W.
, and
Hunt
,
S.
,
2008
, “
Comparison of Outcomes and Cost for Endometrial Cancer Staging Via Traditional Laparotomy, Standard Laparoscopy and Robotic Techniques
,”
Gynecol. Oncol.
,
111
(
3
), pp.
407
411
.
9.
Kumar
,
S.
,
Ahmidi
,
N.
,
Hager
,
G.
,
Singhal
,
P.
,
Corso
,
J.
, and
Krovi
,
V.
,
2015
, “
Surgical Performance Assessment
,”
ASME Mech. Eng.
,
137
(
09
), pp.
S7
S10
.
10.
Mettler
,
L.
, and
Nikam
,
Y. A.
,
2006
, “
A Comparative Survey of Various Uterine Manipulators Used in Operative Laparoscopy
,”
Gynecol. Surg.
,
3
(
4
), pp.
239
243
.
11.
Van den Haak
,
L.
,
Alleblas
,
C.
,
Nieboer
,
T. E.
,
Rhemrev
,
J. P.
, and
Jansen
,
F. W.
,
2015
, “
Efficacy and Safety of Uterine Manipulators in Laparoscopic Surgery: A Review
,”
Arch. Gynecol. Obstet.
,
292
(
5
), pp.
1003
1011
.
12.
Khalek
,
Y. A.
,
Bitar
,
R.
,
Christoforou
,
C.
,
Garzon
,
S.
,
Tropea
,
A.
,
Biondi
,
A.
, and
Sleiman
,
Z.
,
2019
, “
Uterine Manipulator in Total Laparoscopic Hysterectomy: Safety and Usefulness
,”
Updates Surg.
,
72
(
4
), pp.
1
8
.
13.
Bennich
,
G.
,
Rudnicki
,
M.
, and
Lassen
,
P. D.
,
2016
, “
Laparoscopic Surgery for Early Endometrial Cancer
,”
Acta Obstet. Gynecol. Scand.
,
95
(
8
), pp.
894
900
.
14.
Beste
,
T. M.
,
Nelson
,
K. H.
, and
Daucher
,
J. A.
,
2005
, “
Total Laparoscopic Hysterectomy Utilizing a Robotic Surgical System
,”
J. Soc. Laparoendosc. Surg.
,
9
(
1
), p.
13
.
15.
Dikici
,
S.
,
Aldemir Dikici
,
B.
,
Eser
,
H.
,
Gezgin
,
E.
,
Başer
,
Ö.
,
Şahin
,
S.
,
Yılmaz
,
B.
, and
Oflaz
,
H.
,
2018
, “
Development of a 2-DOF Uterine Manipulator With LED Illumination System As a New Transvaginal Uterus Amputation Device for Gynecological Surgeries
,”
Minim. Invasive Ther. Allied Technol.
,
27
(
3
), pp.
177
185
.
16.
Tsai
,
W. N.
,
2013
, “
A Novel Uterine Manipulator Incorporating Non-Local Controls and Lateral Motion
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
.
17.
Yip
,
H. M.
,
Li
,
P.
,
Navarro-Alarcon
,
D.
, and
Liu
,
Y. H.
,
2014
, “
Towards Developing a Robot Assistant for Uterus Positioning During Hysterectomy: System Design and Experiments
,”
Robot. Biomim.
,
1
(
1
), pp.
1
11
.
18.
Yip
,
H. M.
,
Wang
,
Z.
,
Navarro-Alarcon
,
D.
,
Li
,
P.
,
Cheung
,
T. H.
,
Greiffenhagen
,
C.
, and
Liu
,
Y. H.
,
2020
, “
A Collaborative Robotic Uterine Positioning System for Laparoscopic Hysterectomy: Design and Experiments
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
16
(
4
), p.
e2103
.
19.
Wattiez
,
A.
,
Soriano
,
D.
,
Cohen
,
S. B.
,
Nervo
,
P.
,
Canis
,
M.
,
Botchorishvili
,
R.
,
Mage
,
G.
,
Poul
,
J. L.
,
Mille
,
P.
, and
Bruhat
,
M. A.
,
2002
, “
The Learning Curve of Total Laparoscopic Hysterectomy: Comparative Analysis of 1647 Cases
,”
J. Am. Assoc. Gynecol. Laparosc.
,
9
(
3
), pp.
339
345
.
20.
El-Haik
,
B.
, and
Mekki
,
K. S.
,
2011
,
Medical Device Design for Six Sigma: A Road Map for Safety and Effectiveness
,
John Wiley & Sons
,
Hoboken, NJ
.
21.
Mebes
,
I.
,
Diedrich
,
K.
, and
Banz-Jansen
,
C.
,
2012
, “
Total Laparoscopic Hysterectomy Without Uterine Manipulator at Big Uterus Weight (> 280 g)
,”
Arch. Gynecol. Obstet.
,
286
(
1
), pp.
131
134
.
22.
Wong
,
F. W. S.
, and
Lee
,
E. T. C.
,
2014
, “
A Modified Three-Port “Hidden Scars” Surgical Approach in Gynecology: A Surgeon's Experience of an Initial 72 Cases
,”
Gynecol. Minim. Invasive Ther.
,
3
(
2
), pp.
43
46
.
23.
Keriakos
,
R.
, and
Zaklama
,
M.
,
2000
, “
The RUMI Manipulator and Koh Colpotomiser System for Total Laparoscopic Hysterectomy
,”
BJOG: Int. J. Obstet. Gynaecol.
,
107
(
2
), pp.
274
277
.
24.
Andrade
,
K. C.
,
Bortoletto
,
T. G.
,
Almeida
,
C. M.
,
Daniel
,
R. A.
,
Avo
,
H.
,
Pacagnella
,
R. C.
, and
Cecatti
,
J. G.
,
2017
, “
Reference Ranges for Ultrasonographic Measurements of the Uterine Cervix in Low-Risk Pregnant Women
,”
Rev. Bras. Ginecol. Obstet.
,
39
(
9
), pp.
443
452
.
25.
Barnhart
,
K. T.
,
Izquierdo
,
A.
,
Pretorius
,
E. S.
,
Shera
,
D. M.
,
Shabbout
,
M.
, and
Shaunik
,
A.
,
2006
, “
Baseline Dimensions of the Human Vagina
,”
Hum. Reprod.
,
21
(
6
), pp.
1618
1622
.
26.
Lum
,
M. J.
,
Trimble
,
D.
,
Rosen
,
J.
,
Fodero
,
K.
,
King
,
H. H.
,
Sankaranarayanan
,
G.
,
Dosher
,
J.
,
Leuschke
,
R.
,
Martin-Anderson
,
B.
,
Sinanan
,
M.N.
, and
Hannaford
,
B.
,
2006,
Multidisciplinary Approach for Developing a New Minimally Invasive Surgical Robotic System
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006
,
Pisa, Italy
,
Feb. 20–22
,
IEEE
, pp.
841
846
.
27.
Ji
,
D.
,
Shim
,
S.
,
Kim
,
S.
,
Joung
,
S.
, and
Hong
,
J.
,
2020
, “
Master Device With Bending Safety for Flexible Surgical Robots
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061003
.
28.
Idelson
,
C.
,
Uecker
,
J.
,
Garcia
,
J. A.
,
Kohli
,
S.
,
Handing
,
G.
,
Sriramprasad
,
V.
,
Yong
,
K.
, and
Rylander
,
C.
,
2021
, “
Design and Performance Testing of a Novel In Vivo Laparoscope Lens Cleaning Device
,”
ASME J. Med. Devices
,
15
(
3
), p.
035001
.
29.
Nouaille
,
L.
,
Laribi
,
M. A.
,
Nelson
,
C. A.
,
Essomba
,
T.
,
Poisson
,
G.
, and
Zeghloul
,
S.
,
2016
, “
Design Process for Robotic Medical Tool Guidance Manipulators
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
2
), pp.
259
275
.
30.
Ebrahimi
,
A.
,
2015
, “
Design, Manufacturing and Control of an Advanced High-Precision Robotic System for Microsurgery
,” Electronic Theses and Dissertations, 2378.
You do not currently have access to this content.