Abstract

The primary motivation of this study is to develop a cost-effective, safe, easily controlled, and passively adaptive robotic gripper. A novel linear series elastic actuated robotic gripper (LSEA-RG) is proposed to accomplish the aforementioned goals. The LSEA-RG has the ability to adaptively grasp objects with different shapes and sizes by grasping force control. First, the mechanical design, including the transmission scheme, the finger mechanism, and the actuating mechanism is presented. Subsequently, the kinematic analysis is performed to explore the transmission characteristic of the actuating displacement and force. Then a model-free control method based on the lookup functions of the kinematic transmission characteristics is presented to achieve the grasping range and force control. Finally, several grasping experiments are carried out based on the LSEA-RG prototype to evaluate the grasping performance. The results demonstrate that the presented grasping control method which based on the lookup functions is valid. The LSEA-RG could estimate the grasping force without the help of a fingertip force sensor and grasp objects with different shapes and hardness adaptively.

References

1.
Baril
,
M.
,
Laliberté
,
T.
,
Gosselin
,
C.
, and
Routhier
,
F.
,
2013
, “
On the Design of a Mechanically Programmable Underactuated Anthropomorphic Prosthetic Gripper
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121008
.
2.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D'Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Rob.
,
2
(
3
), pp.
107
116
.
3.
Shin
,
Y. J.
,
Lee
,
H. J.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2012
, “
A Robot Finger Design Using a Dual-Mode Twisting Mechanism to Achieve High-Speed Motion and Large Grasping Force
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1398
1405
.
4.
Huang
,
M.
,
Lu
,
Q.
,
Chen
,
W.
,
Qiao
,
J.
, and
Chen
,
X.
,
2019
, “
Design, Analysis, and Testing of a Novel Compliant Underactuated Gripper
,”
Rev. Sci. Instrum.
,
90
(
4
), p.
045122
.
5.
Liu
,
C.-H.
, and
Chiu
,
C.-H.
,
2018
, “
Design and Prototype of Monolithic Compliant Grippers for Adaptive Grasping
,”
Proceedings of the 2018 3rd International Conference on Control and Robotics Engineering (ICCRE)
,
Dalian, China
,
May 12–13
, IEEE, pp.
51
55
.
6.
Hongliang
,
H.
,
Zhenqiang
,
L.
,
Yongjiang
,
C.
, and
Cheng
,
X.
,
2021
, “
Design and Test of Compact Series Elastic Force Actuator for Grasping Mechanism
,”
Trans. Chin. Soc. Agric. Mach.
,
52
(
12
), pp.
426
432
.
7.
Teng
,
Z.
,
Xu
,
G.
,
Liang
,
R.
,
Li
,
M.
,
Zhang
,
S.
,
Chen
,
J.
, and
Han
,
C.
,
2018
, “
Design of an Underactuated Prosthetic Hand With Flexible Multi-Joint Fingers and Eeg-Based Control
,”
Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Shenzhen, China
,
Oct. 25–27
, IEEE, pp.
647
651
.
8.
Kashef
,
S. R.
,
Amini
,
S.
, and
Akbarzadeh
,
A.
,
2020
, “
Robotic Hand: A Review on Linkage-Driven Finger Mechanisms of Prosthetic Hands and Evaluation of the Performance Criteria
,”
Mech. Mach. Theory
,
145
(
1
), p.
103677
.
9.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2020
, “
A Robot Gripper With Variable Stiffness Actuation for Enhancing Collision Safety
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6607
6616
.
10.
Xu
,
Q.
,
2013
, “
Design and Smooth Position/Force Switching Control of a Miniature Gripper for Automated Microhandling
,”
IEEE Trans. Ind. Inform.
,
10
(
2
), pp.
1023
1032
.
11.
Xu
,
Q.
,
2014
, “
Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation
,”
IEEE Trans. Ind. Electron.
,
62
(
2
), pp.
1201
1209
.
12.
Huang
,
S.-J.
,
Chang
,
W.-H.
, and
Su
,
J.-Y.
,
2017
, “
Intelligent Robotic Gripper With Adaptive Grasping Force
,”
Int. J. Control Autom. Syst.
,
15
(
5
), pp.
2272
2282
.
13.
Guo
,
M.
,
Wu
,
P.
,
Yi
,
B.
,
Gealy
,
D.
,
McKinley
,
S.
, and
Abbeel
,
P.
,
2019
, “
Blue Gripper: A Robust, Low-Cost, and Force-Controlled Robot Hand
,”
Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 25–28
, IEEE, pp.
1505
1510
.
14.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
15.
Zhang
,
T.
,
Jiang
,
L.
,
Wu
,
X.
,
Feng
,
W.
,
Zhou
,
D.
, and
Liu
,
H.
,
2014
, “
Fingertip Three-Axis Tactile Sensor for Multifingered Grasping
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1875
1885
.
16.
Jentoft
,
L. P.
,
Dollar
,
A. M.
,
Wagner
,
C. R.
, and
Howe
,
R. D.
,
2014
, “
Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing
,”
Sensors
,
14
(
3
), pp.
3861
3870
.
17.
Hsu
,
J.
,
Yoshida
,
E.
,
Harada
,
K.
, and
Kheddar
,
A.
,
2017
, “
Self-Locking Underactuated Mechanism for Robotic Gripper
,”
Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Cairo, Egypt
,
Oct. 24–26
, IEEE, pp.
620
627
.
18.
Kim
,
U.
,
Lee
,
D.-H.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2015
, “
Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1214
1224
.
19.
Zhang
,
T.
,
Jiang
,
L.
, and
Liu
,
H.
,
2012
, “
A Novel Grasping Force Control Strategy for Multi-Fingered Prosthetic Hand
,”
J. Cent. South Univ.
,
19
(
6
), pp.
1537
1542
.
20.
Ballesteros
,
J.
,
Pastor
,
F.
,
GómezDeGabriel
,
J. M.
,
Gandarias
,
J. M.
, and
Urdiales
,
C.
,
2020
, “
Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI
,”
Sensors
,
20
(
10
), pp.
1
13
.
21.
Kaya
,
O.
,
Tağlıoğlu
,
G. B.
, and
Ertuğrul
,
Ş
,
2021
, “
The Series Elastic Gripper Design, Object Detection, and Recognition by Touch
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
014501
.
22.
Lee
,
S.-Y.
,
Kim
,
B.-S.
,
Song
,
J.-B.
, and
Chae
,
S.-W.
,
2012
, “
Force Control of Robot Fingers Using Series Elastic Actuators
,”
J. Inst. Control Robot. Syst.
,
18
(
10
), pp.
964
969
.
23.
Yu
,
Y.-L.
, and
Lan
,
C.-C.
,
2019
, “
Design of a Miniature Series Elastic Actuator for Bilateral Teleoperations Requiring Accurate Torque Sensing and Control
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
500
507
.
24.
Hua
,
H.
,
Liao
,
Z.
, and
Chen
,
Y.
,
2020
, “
A 1-Dof Bidirectional Graspable Finger Mechanism for Robotic Gripper
,”
J. Mech. Sci. Technol.
,
34
(
11
), pp.
4735
4741
.
25.
Chen
,
T.
, and
Ciocarlie
,
M.
,
2018
, “
Proprioception-Based Grasping for Unknown Objects Using a Series-Elastic-Actuated Gripper
,”
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
6675
6681
.
26.
Pratt
,
J. E.
, and
Krupp
,
B. T.
,
2004
, “
Series Elastic Actuators for Legged Robots
,”
Proceedings of the Unmanned Ground Vehicle Technology Vi
,
Orlando, FL
,
Apr. 12
, pp.
135
144
.
27.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
.
28.
Tsagarakis
,
N. G.
,
Laffranchi
,
M.
,
Vanderborght
,
B.
, and
Caldwell
,
D. G.
,
2009
, “
A Compact Soft Actuator Unit for Small Scale Human Friendly Robots
,”
Proceedings of the 2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
4356
4362
.
29.
Yanlei
,
S.
,
Minglu
,
Z.
,
Xiaojun
,
Z.
, and
Feng
,
B.
,
2016
, “
Design and Analysis of a Rotary-Type Robot Flexible Joint
,”
Chin. J. Mech. Eng.
,
27
(
18
), pp.
2494
2499
.
30.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
105
118
.
31.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
288
297
.
32.
Birglen
,
L.
, and
Gosselin
,
C.
,
2004
, “
Optimal Design of 2-Phalanx Underactuated Fingers
,”
Proceedings of the International Conference on Intelligent Manipulation and Grasp
,
Taipei, Taiwan
,
Sept. 2–4
, pp.
110
116
.
33.
Andrés
,
F. J.
,
Pérez-González
,
A.
,
Rubert
,
C.
,
Fuentes
,
J.
, and
Sospedra
,
B.
,
2018
, “
Comparison of Grasping Performance of Tendon and Linkage Transmission Systems in an Electric-Powered Low-Cost Hand Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011018
.
34.
Dong
,
Y.
, and
Zhang
,
W.
,
2019
, “
A Novel Coupled and Self-Adaptive Anthropomorphic Robot Finger With a Dual-Oblique-Belt Mechanism
,”
Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Osaka, Japan
,
July 3–5
, pp.
732
737
.
35.
Hua
,
H.
,
Liao
,
Z.
,
Wu
,
X.
, and
Chen
,
Y.
,
2021
, “
A Bezier Based State Calibrating Method for Low-Cost Potentiometer With Inherent Nonlinearity
,”
Measurement
,
178
(
1
), p.
109325
.
You do not currently have access to this content.