Abstract

The small actuator torque range brings advantages for the high-accuracy control of a manipulator. By taking the minimum actuator torque range into account, this paper proposes a novel torque optimization method of a 3-DOF redundantly actuated parallel manipulator for friction stir welding. The dynamic model of the 3-DOF redundant parallel manipulator with four kinematic chains is derived by using the principle of virtual work. The solution of the dynamics is not unique, and the range of four actuator torques constitutes a 4D generalized rectangle. A torque optimization method that minimizes the actuator torque range is presented by determining the generalized 4D rectangle with minimum side length. The proposed optimization method is a global solution corresponding to one trajectory of the moving platform, and it is compared with the least square method which is a local solution corresponding to one pose of the moving platform.

References

1.
Manogaran
,
A. P.
,
Racineux
,
G.
, and
Hascoet
,
J. Y.
,
2012
, “
Measurement and Comparison of Force Effort During Friction Stir Welding in a Parallel Kinematic 5-Axis Milling Machine
,”
2012 ASME 11th Biennial Conference on Engineering Systems Design and Analysis
,
ASME
,
New York
, pp.
115
121
.
2.
Shi
,
J.
,
Wang
,
Y.
,
Zhang
,
G.
, and
Ding
,
H.
,
2012
, “
Optimal Design of 3-DOF PKM Module for Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1879
1889
.
3.
Li
,
Q.
,
Wu
,
W.
,
Xiang
,
J. N.
,
Li
,
H.
, and
Wu
,
C.
,
2015
, “
A Hybrid Robot for Friction Stir Welding
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
14
), pp.
2639
2650
.
4.
Wu
,
J.
,
Ye
,
H.
,
Yu
,
G.
, and
Huang
,
T.
,
2022
, “
A Novel Dynamic Evaluation Method and its Application to a 4-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
168
, p.
104627
.
5.
Muller
,
A.
,
2005
, “
Consequences of Geometric Imperfections for Control of Redundantly Actuated Parallel Manipulator
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
668
677
.
6.
Muller
,
A.
,
2010
, “
Internal Preload Control of Redundantly Actuated Parallel Manipulators – Its Application to Backlash Avoiding Control
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
21
31
.
7.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Stiffness and Natural Frequency of a 3-DOF Parallel Manipulator With Consideration of Additional leg Candidates
,”
Robot. Auton. Syst.
,
61
(
8
), pp.
868
875
.
8.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
May 2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Robot.
,
3
(
2
), p.
021013
.
9.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
October 2017
, “
Type Synthesis of Parallel Tracking Mechanism With Varied Axes by Modeling Its Finite Motions Algebraically
,”
ASME J. Mech. Robot.
,
9
(
5
), p.
054504
.
10.
Wang
,
M.
,
Liu
,
H.
, and
Huang
,
T.
,
October 2017
, “
An Approach for the Lightweight Design of a 3-SPR Parallel Mechanism
,”
ASME J. Mech. Robot.
,
9
(
5
), p.
051016
.
11.
Wu
,
J.
,
Gao
,
Y.
,
Zhang
,
B.
, and
Wang
,
L.
, “
Workspace and Dynamic Performance Evaluation of the Parallel Manipulators in a Spray-Painting Equipment
,”
Robot. Comput.-Integr. Manuf.
,
44
(
2017
), pp.
199
207
.
12.
Kim
,
J.
,
Park
,
F. C.
, et al
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Robot. Autom.
,
17
(
4
), pp.
423
434
.
13.
Yi
,
B.-J.
,
Oh
,
S.-R.
, and
Suh
,
I. H.
,
1999
, “
Five-bar Finger Mechanism Involving Redundant Actuators: Analysis and its Applications
,”
IEEE Trans. Robot. Autom.
,
15
(
6
), pp.
1001
1010
.
14.
Shao
,
H.
,
Guan
,
L.
,
Wang
,
L.
, and
Wu
,
J.
,
2007
, “
Drive Force Optimization for a Redundant Parallel Machine
,”
J. Tsinghua Univ.
,
47
, pp.
1325
1329
.
15.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2015
, “
Redundantly Actuated 3-RRR Spherical Parallel Manipulator Used as a Haptic Device: Improving Dexterity and Eliminating Singularity
,”
Robotica
,
33
(
5
), pp.
1113
1130
.
16.
Müller
,
A.
,
2011
, “
Problems in the Control of Redundantly Actuated Parallel Manipulators Caused by Geometric Imperfections
,”
Meccanica
,
46
, pp.
41
49
.
17.
Zhao
,
Y.
, and
Gao
,
F.
,
2009
, “
Dynamic Performance Comparison of the 8PSS Redundant Parallel Manipulator and its non-Redundant Counterpart-the 6PSS Parallel Manipulator
,”
Mech. Mach. Theory
,
44
(
5
), pp.
991
1008
.
18.
Nahon
,
M.
, and
Angeles
,
J.
,
1989
, “
Force Optimization in Redundantly-Actuated Closed Kinematic Chains
,”
1989 IEEE International Conference on Robotics and Automation
,
IEEE
,
Silver Spring, MD
, pp.
951
956
.
19.
Nahon
,
M.
, and
Angeles
,
J.
,
1992
, “
Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,”
IEEE Trans. Robot. Autom.
,
8
(
4
), pp.
439
450
.
20.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.
21.
Wu
,
J.
,
Li
,
T.
, and
Xu
,
B.
,
2013
, “
Force Optimization of Planar 2-DOF Parallel Manipulators With Actuation Redundancy Considering Deformation
,”
Proc. Inst. Mech. Eng., Part C
,
227
(
6
), pp.
1371
1377
.
22.
Kerr
,
D. R.
,
Griffis
,
M.
,
Sanger
,
D. J.
, and
Duffy
,
J.
,
1992
, “
Redundant Grasps, Redundant Manipulators, and Their Dual Relationship
,”
J. Robot. Syst.
,
9
(
7
), pp.
973
1000
.
23.
Choi
,
J. H.
,
Seo
,
T.
, and
Lee
,
J. W.
,
2014
, “
Torque Distribution Optimization of Redundantly Actuated Planar Parallel Mechanisms Based on a Null-Space Solution
,”
Robotica
,
32
(
7
), pp.
1125
1134
.
24.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.
25.
Beiner
,
L.
,
1997
, “
Redundant Actuation of a Closed-Chain Device
,”
Adv. Robot.
,
11
(
3
), pp.
233
245
.
26.
Chai
,
X.
,
Zhang
,
N.
,
He
,
L.
,
Li
,
Q.
, and
Ye
,
W.
,
2020
, “
Kinematic Sensitivity Analysis and Dimensional Synthesis of a Redundantly Actuated Parallel Robot for Friction Stir Welding
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
10
.
You do not currently have access to this content.