Abstract

Dielectric elastomer-based crawling robots can utilize a voltage-induced deformation to achieve prescribed crawling movements. Although a rich repertoire of robots have been proposed with various design schemes, developing the logic and a unified methodology is hard. This work designs inchworm-inspired crawling robots based on computational optimization. An improved shape and topology optimization method is developed using a fat B-spline curve to generate a stable frame for the dielectric elastomer actuators (DEAs). An optimization framework is proposed, and the updating algorithm is assessed with a sensitivity analysis. The leg-DEA and abdomen-DEA of the crawling robot are modeled and designed automatically with iterations implemented in finite element simulation. An optimization soft crawling robot was fabricated and tested, which can move smoothly along the ground.

References

1.
Zhakypov
,
Z.
, and
Paik
,
J.
,
2018
, “
Design Methodology for Constructing Multimaterial Origami Robots and Machines
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
151
165
.
2.
Qin
,
L.
,
Liang
,
X.
,
Huang
,
H.
,
Chui
,
C. K.
,
Yeow
,
R. C.-H.
, and
Zhu
,
J.
,
2019
, “
A Versatile Soft Crawling Robot With Rapid Locomotion
,”
Soft Rob.
,
6
(
4
), pp.
455
467
.
3.
Shi
,
Z.
,
Pan
,
J.
,
Tian
,
J.
,
Huang
,
H.
,
Jiang
,
Y.
, and
Zeng
,
S.
,
2019
, “
An Inchworm-Inspired Crawling Robot
,”
J. Bionic Eng.
,
16
(
4
), pp.
582
592
.
4.
Tang
,
T.
,
Hou
,
X.
,
Xiao
,
Y.
,
Su
,
Y.
,
Shi
,
Y.
, and
Rao
,
X.
,
2019
, “
Research on Motion Characteristics of Space Truss Crawling Robot
,”
Int. J. Adv. Rob. Syst.
,
16
(
1
), p.
1729881418821578
.
5.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Rob.
,
3
(
25
), p.
eaat2874
.
6.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Wang
,
W.
,
2021
, “
Modular Crawling Robots Using Soft Pneumatic Actuators
,”
Front. Mech. Eng.
,
16
(
1
), pp.
163
175
.
7.
Chen
,
B.
,
Wang
,
N.
,
Chen
,
H.
, and
Zhang
,
X.
,
2021
, “
Study of an Eccentric Dielectric Elastomer Motor and Its Application for Soft Robots
,”
Smart Mater. Struct.
,
30
(
4
), p.
045014
.
8.
Steffan
,
E.
,
Pal
,
S.
, and
Das
,
T.
,
2020
, “
Bio-inspired Locomotion of Circular Robots With Diametrically Translating Legs
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011005
.
9.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
, et al.,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
10.
Crespi
,
A.
, and
Ijspeert
,
A. J.
,
2008
, “
Online Optimization of Swimming and Crawling in an Amphibious Snake Robot
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
75
87
.
11.
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2018
, “
Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061016
.
12.
Zhao
,
J.
,
Zhang
,
J.
,
McCoul
,
D.
,
Hao
,
Z.
,
Wang
,
S.
,
Wang
,
X.
,
Huang
,
B.
, and
Sun
,
L.
,
2019
, “
Soft and Fast Hopping–Running Robot With Speed of Six Times Its Body Length Per Second
,”
Soft Rob.
,
6
(
6
), pp.
713
721
.
13.
Chen
,
Y.
,
Zhao
,
H.
,
Mao
,
J.
,
Chirarattananon
,
P.
,
Helbling
,
E. F.
,
Hyun
,
N.-s. P.
,
Clarke
,
D. R.
, and
Wood
,
R. J.
,
2019
, “
Controlled Flight of a Microrobot Powered by Soft Artificial Muscles
,”
Nature
,
575
(
7782
), pp.
324
329
.
14.
Kamata
,
M.
,
Yamazaki
,
S.
,
Tanise
,
Y.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2018
, “
Morphological Change in Peristaltic Crawling Motion of a Narrow Pipe Inspection Robot Inspired by Earthworms Locomotion
,”
Adv. Rob.
,
32
(
7
), pp.
386
397
.
15.
Singh
,
P.
, and
Ananthasuresh
,
G.
,
2012
, “
A Compact and Compliant External Pipe-Crawling Robot
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
251
260
.
16.
Chen
,
S.
,
Cao
,
Y.
,
Sarparast
,
M.
,
Yuan
,
H.
,
Dong
,
L.
,
Tan
,
X.
, and
Cao
,
C.
,
2020
, “
Soft Crawling Robots: Design, Actuation, and Locomotion
,”
Adv. Mater. Technol.
,
5
(
2
), p.
1900837
.
17.
Pfeil
,
S.
,
Henke
,
M.
,
Katzer
,
K.
,
Zimmermann
,
M.
, and
Gerlach
,
G.
,
2020
, “
A Worm-Like Biomimetic Crawling Robot Based on Cylindrical Dielectric Elastomer Actuators
,”
Front. Rob. AI
,
7
(
1
), p.
9
.
18.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021019
.
19.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), p.
eaah3690
.
20.
Wang
,
N.
,
Chen
,
B.
,
Guo
,
H.
,
Cui
,
C.
, and
Zhang
,
X.
,
2021
, “
Design of Dielectric Elastomer Grippers Using Bezier Curves
,”
Mech. Mach. Theory
,
158
(
1
), p.
104216
.
21.
Gupta
,
U.
,
Qin
,
L.
,
Wang
,
Y.
,
Godaba
,
H.
, and
Zhu
,
J.
,
2019
, “
Soft Robots Based on Dielectric Elastomer Actuators: A Review
,”
Smart Mater. Struct.
,
28
(
10
), p.
103002
.
22.
Rodrigue
,
H.
,
Wang
,
W.
,
Han
,
M.-W.
,
Kim
,
T. J.
, and
Ahn
,
S.-H.
,
2017
, “
An Overview of Shape Memory Alloy-Coupled Actuators and Robots
,”
Soft Rob.
,
4
(
1
), pp.
3
15
.
23.
Chen
,
Y.
,
Chen
,
C.
,
Rehman
,
H. U.
,
Zheng
,
X.
,
Li
,
H.
,
Liu
,
H.
, and
Hedenqvist
,
M. S.
,
2020
, “
Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges
,”
Molecules
,
25
(
18
), p.
4246
.
24.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
25.
An
,
N.
,
Li
,
M.
, and
Zhou
,
J.
,
2018
, “
Modeling and Understanding Locomotion of Pneumatic Soft Robots
,”
Soft Mater.
,
16
(
3
), pp.
151
159
.
26.
Wang
,
J.
,
Min
,
J.
,
Fei
,
Y.
, and
Pang
,
W.
,
2019
, “
Study on Nonlinear Crawling Locomotion of Modular Differential Drive Soft Robot
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1107
1123
.
27.
Usevitch
,
N. S.
,
Hammond
,
Z. M.
, and
Schwager
,
M.
,
2020
, “
Locomotion of Linear Actuator Robots Through Kinematic Planning and Nonlinear Optimization
,”
IEEE Trans. Rob.
,
36
(
5
), pp.
1404
1421
.
28.
Luo
,
B.
,
Li
,
B.
,
Yu
,
Y.
,
Yu
,
M.
,
Ma
,
J.
,
Yang
,
W.
,
Wang
,
P.
, and
Jiao
,
Z.
,
2020
, “
A Jumping Robot Driven by a Dielectric Elastomer Actuator
,”
Appl. Sci.
,
10
(
7
), p.
2241
.
29.
Wang
,
S.
,
Huang
,
B.
,
McCoul
,
D.
,
Li
,
M.
,
Mu
,
L.
, and
Zhao
,
J.
,
2019
, “
A Soft Breaststroke-Inspired Swimming Robot Actuated by Dielectric Elastomers
,”
Smart Mater. Struct.
,
28
(
4
), p.
045006
.
30.
Zhang
,
J.
,
Sheng
,
J.
,
O Neill
,
C. T.
,
Walsh
,
C. J.
,
Wood
,
R. J.
,
Ryu
,
J.-H.
,
Desai
,
J. P.
, and
Yip
,
M. C.
,
2019
, “
Robotic Artificial Muscles: Current Progress and Future Perspectives
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
761
781
.
31.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2019
, “
Design of Dielectric Elastomer Actuator Using Topology Optimization Method Based on Genetic Algorithm
,”
Smart Mater. Struct.
,
28
(
6
), p.
065013
.
32.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2018
, “
Design of a Rotary Dielectric Elastomer Actuator Using a Topology Optimization Method Based on Pairs of Curves
,”
Smart Mater. Struct.
,
27
(
5
), p.
055011
.
33.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J. P.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes As a Means of Actuation
,”
Sens. Actuators A
,
64
(
1
), pp.
77
85
.
34.
Wang
,
N.
,
Cui
,
C.
,
Chen
,
B.
,
Guo
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Translational and Rotational Bistable Actuators Based on Dielectric Elastomer
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041011
.
35.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Use of Aligned Fibers to Enhance the Performance of Dielectric Elastomer Inchworm Robots
,”
Electroactive Polymer Actuators and Devices (EAPAD) 2015
,
San Diego, CA
,
Mar. 8–12
,
International Society for Optics and Photonics
, Vol.
9430
, p.
94301P
.
36.
Cao
,
J.
,
Liang
,
W.
,
Wang
,
Y.
,
Lee
,
H. P.
,
Zhu
,
J.
, and
Ren
,
Q.
,
2019
, “
Control of a Soft Inchworm Robot With Environment Adaptation
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
3809
3818
.
37.
Xu
,
L.
,
Chen
,
H.-Q.
,
Zou
,
J.
,
Dong
,
W.-T.
,
Gu
,
G.-Y.
,
Zhu
,
L.-M.
, and
Zhu
,
X.-Y.
,
2017
, “
Bio-inspired Annelid Robot: A Dielectric Elastomer Actuated Soft Robot
,”
Bioinspiration Biomimetics
,
12
(
2
), p.
025003
.
38.
Jung
,
K.
,
Koo
,
J. C.
,
Lee
,
Y. K.
,
Choi
,
H. R.
, et al.
2007
, “
Artificial Annelid Robot Driven by Soft Actuators
,”
Bioinspiration Biomimetics
,
2
(
2
), p.
S42
.
39.
Chen
,
F.
,
Liu
,
K.
,
Wang
,
Y.
,
Zou
,
J.
,
Gu
,
G.
, and
Zhu
,
X.
,
2019
, “
Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields
,”
IEEE Trans. Rob.
,
35
(
5
), pp.
1150
1165
.
40.
Rizzello
,
G.
,
Serafino
,
P.
,
Naso
,
D.
, and
Seelecke
,
S.
,
2019
, “
Towards Sensorless Soft Robotics: Self-sensing Stiffness Control of Dielectric Elastomer Actuators
,”
IEEE Trans. Rob.
,
36
(
1
), pp.
174
188
.
41.
Gu
,
G.-Y.
,
Gupta
,
U.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.
,
2017
, “
Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1263
1271
.
42.
Chen
,
Y.
,
Agostini
,
L.
,
Moretti
,
G.
,
Fontana
,
M.
, and
Vertechy
,
R.
,
2019
, “
Dielectric Elastomer Materials for Large-Strain Actuation and Energy Harvesting: A Comparison Between Styrenic Rubber, Natural Rubber and Acrylic Elastomer
,”
Smart Mater. Struct.
,
28
(
11
), p.
114001
.
43.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
(
1
), p.
103622
.
44.
Mortazavi
,
A.
, and
Toğan
,
V.
,
2016
, “
Simultaneous Size, Shape, and Topology Optimization of Truss Structures Using Integrated Particle Swarm Optimizer
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
715
736
.
45.
Müller
,
T. E.
, and
Klashorst
,
E.
,
2017
, “
A Quantitative Comparison Between Size, Shape, Topology and Simultaneous Optimization for Truss Structures
,”
Lat. Am. J. Solids Struct.
,
14
(
12
), pp.
2221
2242
.
46.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A 213-Line Topology Optimization Code for Geometrically Nonlinear Structures
,”
Struct. Multidiscipl. Optim.
,
59
(
5
), pp.
1863
1879
.
47.
Chen
,
B.
,
Wang
,
N.
,
Zhang
,
X.
, and
Chen
,
W.
,
2020
, “
Design of Dielectric Elastomer Actuators Using Topology Optimization on Electrodes
,”
Smart Mater. Struct.
,
29
(
7
), p.
075029
.
48.
Qu
,
S.
, and
Suo
,
Z.
,
2012
, “
A Finite Element Method for Dielectric Elastomer Transducers
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
459
466
.
49.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
50.
Zhao
,
X.
, and
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
,”
Phys. Rev. Lett.
,
104
(
17
), p.
178302
.
51.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.
52.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
53.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
54.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2010
, “
Efficient Topology Optimization in Matlab Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
.
55.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
56.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
(
1
), pp.
422
441
.
57.
Wang
,
N.
,
Guo
,
H.
,
Chen
,
B.
,
Cui
,
C.
, and
Zhang
,
X.
,
2019
, “
Integrated Design of Actuation and Mechanism of Dielectric Elastomers Using Topology Optimization Based on Fat Bezier Curves.
,”
Soft Rob.
,
6
(
5
), pp.
644
656
.
58.
Conn
,
A. T.
, and
Rossiter
,
J.
,
2011
, “
Smart Radially Folding Structures
,”
IEEE/ASME Trans. Mechatron.
,
17
(
5
), pp.
968
975
.
You do not currently have access to this content.