Abstract

Modular active cell robots (MACROs) are a design paradigm for modular robotic hardware that uses only two components, namely actuators and passive compliant joints. Under the MACRO approach, a large number of actuators and joints are connected to create mesh-like cellular robotic structures that can be actuated to achieve large deformation and shape change. In this two-part paper, we study the importance of different possible mesh topologies within the MACRO framework. Regular and semi-regular tilings of the plane are used as the candidate mesh topologies and simulated using finite element analysis (FEA). In Part 1, we use FEA to evaluate their passive stiffness characteristics. Using a strain-energy method, the homogenized material properties (Young's modulus, shear modulus, and Poisson's ratio) of the different mesh topologies are computed and compared. The results show that the stiffnesses increase with increasing nodal connectivity and that stretching-dominated topologies have higher stiffness compared to bending-dominated ones. We also investigate the role of relative actuator-node stiffness on the overall mesh characteristics. This analysis shows that the stiffness of stretching-dominated topologies scales directly with their cross-section area whereas bending-dominated ones do not have such a direct relationship.

References

1.
Chen
,
I. M.
, and
Yim
,
M.
,
2016
, “Modular Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Cham
, pp.
531
542
.
2.
Romanishin
,
J. W.
,
Gilpin
,
K.
, and
Rus
,
D.
,
2013
, “
M-Blocks: Momentum-Driven, Magnetic Modular Robots
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
4288
4295
.
3.
White
,
P.
,
Zykov
,
V.
,
Bongard
,
J.
, and
Lipson
,
H.
,
2005
, “
Three Dimensional Stochastic Reconfiguration of Modular Robots
,”
Robot. Sci. Syst.
,
1
, pp.
161
168
.
4.
Zykov
,
V.
,
Chan
,
A.
, and
Lipson
,
H.
,
2007
, “
Molecubes: An Open-Source Modular Robotics Kit
,”
IROS-2007 Self-Reconfigurable Robotics Workshop
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
3
6
.
5.
Murata
,
S.
,
Yoshida
,
E.
,
Kamimura
,
A.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2002
, “
M-TRAN: Self-Reconfigurable Modular
,”
IEEE/ASME Trans. Mechatron
,
7
(
4
), pp.
431
441
.
6.
Nawroj
,
A. I.
, and
Dollar
,
A. M.
,
2017
, “
Shape Control of Compliant, Articulated Meshes: Towards Modular Active-Cell Robots (MACROs)
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1878
1884
.
7.
Nawroj
,
A. I.
,
Swensen
,
J. P.
, and
Dollar
,
A. M.
,
2017
, “
Toward Modular Active-Cell Robots (MACROs): SMA Cell Design and Modeling of Compliant, Articulated Meshes
,”
IEEE Trans. Robot.
,
33
(
4
), pp.
796
806
.
8.
Lieber
,
R. L.
, and
Fridén
,
J.
,
2000
, “
Functional and Clinical Significance
,”
Muscle Nerve
,
23
(
11
), pp.
1647
1666
.
9.
Hirst
,
G. D. S.
,
1979
, “
Mechanisms of Peristalsis
,”
Br. Med. Bull.
,
35
(
3
), pp.
263
268
.
10.
Grunbaum
,
B.
, and
Shephard
,
G. C.
,
2019
, “
Tilings by Regular Polygons
,”
Math. Mag.
,
50
(
5
), pp.
227
247
.
11.
Nawroj
,
A. I.
,
Swensen
,
J. P.
, and
Dollar
,
A. M.
,
2015
, “
Design of Mesoscale Active Cells for Networked, Compliant Robotic Structures
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
,
IEEE
, pp.
3284
3289
.
12.
Nguyen
,
V. D.
, and
Noels
,
L.
,
2014
, “
Computational Homogenization of Cellular Materials
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2183
2203
.
13.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
14.
Wagner
,
M. A.
,
Lumpe
,
T. S.
,
Chen
,
T.
, and
Shea
,
K.
,
2019
, “
Programmable, Active Lattice Structures: Unifying Stretch-Dominated and Bending-Dominated Topologies
,”
Extrem. Mech. Lett.
,
29
, p.
100461
.
15.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
16.
Barchiesi
,
E.
,
Spagnuolo
,
M.
, and
Placidi
,
L.
,
2019
, “
Mechanical Metamaterials: A State of the Art
,”
Math. Mech. Solids
,
24
(
1
), pp.
212
234
.
17.
Haghpanah
,
B.
,
Ebrahimi
,
H.
,
Mousanezhad
,
D.
,
Hopkins
,
J.
, and
Vaziri
,
A.
,
2016
, “
Programmable Elastic Metamaterials
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
643
649
.
18.
Zhang
,
W.
,
Dai
,
G.
,
Wang
,
F.
,
Sun
,
S.
, and
Bassir
,
H.
,
2007
, “
Using Strain Energy-Based Prediction of Effective Elastic Properties in Topology Optimization of Material Microstructures
,”
Acta Mech. Sin.
,
23
(
1
), pp.
77
89
.
19.
Patiballa
,
S. K.
, and
Krishnan
,
G.
,
2018
, “
Qualitative Analysis and Conceptual Design of Planar Metamaterials With Negative Poisson’s Ratio
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021006
.
20.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2009
, “
Topology Optimization of Contact-Aided Compliant Cellular Mechanisms
,”
Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS
,
Oxnard, CA
,
Sept. 21–23
, pp.
305
315
.
21.
Alsayednoor
,
J.
,
Harrison
,
P.
, and
Guo
,
Z.
,
2013
, “
Large Strain Compressive Response of 2-D Periodic Representative Volume Element for Random Foam Microstructures
,”
Mech. Mater.
,
66
, pp.
7
20
.
22.
Sun
,
C.-T.
, and
Vaidya
,
R. S.
,
1996
, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
,
56
(
2
), pp.
171
179
.
23.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.