Abstract

In many rescue and detection tasks, mobile robots are required to transverse over uneven terrains and enter some dangerous environments that people cannot overcome, such as crevices, pipes, gullies, etc. High mobility/speed and adaptability to complex environment are two important performance indexes for mobile robots. Legged robots are with high environmental adaptability, while wheeled robots are with high mobility. Since existing mobile robots cannot meet these two requirements simultaneously, a flexible, extensible, and reconfigurable multi-terrain vehicle with a varying wheelbase is proposed innovatively. The vehicle body contains two main parts: one middle plate and two side plates, which both have two active wheels and are connected to the same shaft, which has two passive wheels on both sides. Specially, the included angle between one middle plate and two side plates is driven by an active motor, and then the vehicle can behave many forms by adjusting the wheelbase between two pair of active wheels. Under the body configuration, the multi-terrain vehicle can achieve the motions of crossing deep pit, climbing stair, crossing height limiting rod, climbing crevice, and crossing pipe by folding and varying the wheelbase. First, the detailed mechanical structure of multi-terrain vehicle is designed. Second, the kinematics of the multi-terrain vehicle including the inverse and forward solutions of wheelbase and centroid velocity are analyzed. Third, the control scheme combining travel speed controller, turn controller, and wheelbase controller is proposed based on proportional-Integral-derivative algorithm. Finally, many simulations and experiments validate both the feasibility and effectiveness of the proposed structure and control of the multi-terrain vehicle.

References

1.
Rubio
,
F.
,
Valero
,
F.
, and
Llopis-Albert
,
C.
,
2019
, “
A Review of Mobile Robots: Concepts, Methods, Theoretical Framework, and Applications
,”
Int. J. Adv. Robot. Syst.
,
16
(
2
), p.
1729881419839596
.
2.
Fragapane
,
G.
,
Ivanov
,
D.
,
Peron
,
M.
,
Sgarbossa
,
F.
, and
Strandhagen
,
J. O.
,
2022
, “
Increasing Flexibility and Productivity in Industry 4.0 Production Networks With Autonomous Mobile Robots and Smart Intralogistics
,”
Ann. Oper. Res.
,
308
(
1–2
), pp.
125
143
.
3.
Song
,
Z.
,
Luo
,
Z. R.
,
Wei
,
G. W.
, and
Shang
,
J. Z.
,
2022
, “
A Portable Six-Wheeled Mobile Robot With Reconfigurable Body and Self-Adaptable Obstacle-Climbing Mechanisms
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051010
.
4.
Ben-Tzvi
,
P.
, and
Saab
,
W.
,
2019
, “
A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041008
.
5.
Fan
,
J. Z.
,
Xu
,
T.
,
Fang
,
Q. Q.
,
Zhao
,
J.
, and
Zhu
,
Y. H.
,
2020
, “
A Novel Style Design of a Permanent-Magnetic Adsorption Mechanism for a Wall-Climbing Robot
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
035001
.
6.
Chen
,
J. K.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Bi
,
W. Y.
,
2021
, “
Stiffness Evaluation of an Adsorption Robot for Large-Scale Structural Parts Processing
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040907
.
7.
Miki
,
T.
,
Lee
,
J.
,
Hwangbo
,
J.
,
Wellhausen
,
L.
,
Koltun
,
V.
, and
Hutter
,
M.
,
2022
, “
Learning Robust Perceptive Locomotion for Quadrupedal Robots in the Wild
,”
Sci. Rob.
,
7
(
62
), p.
eabk2822
.
8.
Chen
,
G. R.
,
Guo
,
S.
,
Hou
,
B. W.
, and
Wang
,
J. Z.
,
2020
, “
Virtual Model Control for Quadruped Robots
,”
IEEE Access
,
8
(
7
), pp.
140736
140751
.
9.
Herrera-Cordero
,
M. E.
,
Arias-Montiel
,
M.
,
Ceccarelli
,
M.
, and
Lugo-Gonzalez
,
E.
,
2021
, “
Cosimulation and Control of a Single-Wheel Pendulum Mobile Robot
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050909
.
10.
Yin
,
H.
,
Chen
,
Y. H.
, and
Yu
,
D. J.
,
2019
, “
Controlling an Underactuated Two-Wheeled Mobile Robot: A Constraint-Following Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p.
071002
.
11.
Sheikhlar
,
A.
, and
Fakharian
,
A.
,
2018
, “
Online Policy Iteration-Based Tracking Control of Four Wheeled Omni-Directional Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
081017
.
12.
Song
,
Z.
,
Luo
,
Z. R.
,
Wei
,
G. W.
, and
Shang
,
J. Z.
,
2021
, “
Design and Analysis of a Six-Wheeled Companion Robot With Mechanical Obstacle-Overcoming Adaptivity
,”
Mech. Sci.
,
12
(
2
), pp.
1115
1136
.
13.
Thueer
,
T.
, and
Siegwart
,
R.
,
2010
, “
Mobility Evaluation of Wheeled All-Terrain Robots
,”
Rob. Auton. Syst.
,
58
(
5
), pp.
508
519
.
14.
Pradhan
,
D.
,
Sen
,
J.
, and
Hui
,
N. B.
,
2014
, “
Design and Development of an Automated All-Terrain Wheeled Robot
,”
Adv. Rob. Res.
,
1
(
1
), pp.
21
39
.
15.
Gupta
,
A. K.
, and
Gupta
,
V. K.
,
2013
, “
Design and Development of Six-Wheeled Multi-Terrain Robot
,”
International Conference on Control, Automation, Robotics and Embedded Systems (CARE)
,
Jabalpur, India
,
Dec. 16–18
, IEEE, pp.
1
6
.
16.
Sanngeon
,
W.
,
Afzulpurkar
,
N.
,
Bhuripanyo
,
J.
, and
Bodhale
,
D.
,
2009
, “
Adaptive Geometry Track Design and Implementation for an All Terrain Mobile Robot
,”
2008 IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
,
Feb. 22–25
, IEEE, pp.
413
418
.
17.
Gratton
,
E.
,
Benyeogor
,
M.
,
Nnoli
,
K.
,
Olakanmi
,
O.
,
Wolf
,
L.
,
Berti
,
Z.
,
Kumar
,
S.
, and
Saha
,
P.
,
2020
, “
Multi-Terrain Quadrupedal-Wheeled Robot Mechanism: Design, Modeling, and Analysis
,”
Eur. J. Eng. Technol. Res.
,
5
(
12
), pp.
24
33
.
18.
Luces
,
J. V. S.
,
Matsuzaki
,
S.
, and
Hirata
,
Y.
,
2020
, “
RoVaLL: Design and Development of a Multi-Terrain Towed Robot With Variable Lug-Length Wheels
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6017
6024
.
19.
Ding
,
T.
,
Zhang
,
Y. H.
,
Ma
,
G. C.
,
Cao
,
Z. H.
, and
Zhao
,
X. W.
,
2022
, “
Trajectory Tracking of Redundantly Actuated Mobile Robot by MPC Velocity Control Under Steering Strategy Constraint
,”
Mechatronics
,
84
(
6
), p.
102779
.
20.
Chen
,
Z.
,
Liu
,
Y.
,
He
,
W.
,
Qiao
,
H.
, and
Ji
,
H.
,
2020
, “
Adaptive-Neural-Network-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot With Velocity Constraints
,”
IEEE Trans. Ind. Electron.
,
68
(
6
), pp.
5057
5067
.
21.
Ding
,
L.
,
Li
,
S.
,
Gao
,
H. B.
,
Chen
,
C.
, and
Deng
,
Z. Q.
,
2018
, “
Adaptive Partial Reinforcement Learning Neural Network-Based Tracking Control for Wheeled Mobile Robotic Systems
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
50
(
7
), pp.
2512
2523
.
22.
Saleh
,
A. L.
,
Hussain
,
M. A.
, and
Klim
,
S. M.
,
2018
, “
Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller
,”
J. Univ. Babylon Eng. Sci.
,
26
(
4
), pp.
292
306
.
23.
Jabeur
,
C. B.
, and
Seddik
,
H.
,
2021
, “
Design of a PID Optimized Neural Networks and PD Fuzzy Logic Controllers for a Two-Wheeled Mobile Robot
,”
Asian J. Control
,
23
(
1
), pp.
23
41
.
24.
Ayten
,
K. K.
,
Çiplak
,
M. H.
, and
Dumlu
,
A.
,
2019
, “
Implementation a Fractional-Order Adaptive Model-Based PID-Type Sliding Mode Speed Control for Wheeled Mobile Robot
,”
Proc. Inst. Mech. Eng. I: J. Syst. Control Eng.
,
233
(
8
), pp.
1067
1084
.
25.
Yamauchi
,
B. M.
,
2004
, “
PackBot: A Versatile Platform for Military Robotics
,”
Unmanned Ground Vehicle Technology VI
,
Orlando, FL
,
Sept. 2
, Vol. 5422, pp.
228
237
.
You do not currently have access to this content.