Abstract

Safe tool-tissue interaction is critical in medicine. The exerted force or torque on the tissue is required to be under control. This paper presents a design framework for producing simple mechanisms with adjustable constant force or torque. The constant load is generated by paralleling a positive constant stiffness spring and a negative constant stiffness mechanism. The combined output load can be tuned by simply changing the preload of the positive stiffness spring. Also, an algorithm is proposed as a key component of the design framework for assisting the design of the negative stiffness mechanism. By determining a prescribed stiffness that meets the requirement of the application, the proposed algorithm which consists of a finite element simulation (FES) and genetic algorithm (GA) seeks a proper beam structure through iterative optimization automatically. Two example applications are provided to demonstrate the effectiveness of using the design method in satisfying medical needs. Specifically, one translational application and one rotational application are used to show the capability and the versatility of the design framework. According to the experimental results of both examples, the produced mechanisms are able to output a required constant load along the target displacement consistently, and the output load magnitude can be controlled online.

References

1.
Davies
,
B.
,
Harris
,
S.
,
Lin
,
W.
,
Hibberd
,
R.
,
Middleton
,
R.
, and
Cobb
,
J.
,
1997
, “
Active Compliance in Robotic Surgery—The Use of Force Control As a Dynamic Constraint
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
211
(
4
), pp.
285
292
.
2.
Nathan
,
M.
,
Davies
,
B.
,
Hibberd
,
B.
, and
Wickham
,
J.
,
1994
, “
Devices for Automated Resection of the Prostate
,”
Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery
,
Pittsburgh, PA
, pp.
342
345
.
3.
Davies
,
B. L.
,
1996
, “A Discussion of Safety Issues for Medical Robots,”
Computer-Integrated Surgery
,
MIT Press, Cambridge, MA
, pp.
287
296
.
4.
Westebring-van der Putten
,
E. P.
,
Goossens
,
R. H.
,
Jakimowicz
,
J. J.
, and
Dankelman
,
J.
,
2008
, “
Haptics in Minimally Invasive Surgery—A Review
,”
Minimally Invasive Ther. Allied Technol.
,
17
(
1
), pp.
3
16
.
5.
Cheng
,
Z.
, and
Savarimuthu
,
T. R.
,
2021
, “
A Disposable Force Regulation Mechanism for Throat Swab Robot
,”
2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC)
,
Virtual
,
Nov. 1–5
, pp.
4792
4795
.
6.
Calanca
,
A.
,
Muradore
,
R.
, and
Fiorini
,
P.
,
2015
, “
A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots
,”
IEEE/ASME Trans. Mechatron.
,
21
(
2
), pp.
613
624
.
7.
Li
,
H.-Y.
,
Paranawithana
,
I.
,
Yang
,
L.
,
Lim
,
T. S. K.
,
Foong
,
S.
,
Ng
,
F. C.
, and
Tan
,
U.-X.
,
2018
, “
Stable and Compliant Motion of Physical Human–Robot Interaction Coupled With a Moving Environment Using Variable Admittance and Adaptive Control
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2493
2500
.
8.
Li
,
H.-Y.
,
Dharmawan
,
A. G.
,
Paranawithana
,
I.
,
Yang
,
L.
, and
Tan
,
U.-X.
,
2020
, “
A Control Scheme for Physical Human–Robot Interaction Coupled With an Environment of Unknown Stiffness
,”
J. Intell. Rob. Syst.
,
100
(
1
), pp.
165
182
.
9.
Haouchine
,
N.
,
Kuang
,
W.
,
Cotin
,
S.
, and
Yip
,
M.
,
2018
, “
Vision-Based Force Feedback Estimation for Robot-Assisted Surgery Using Instrument-Constrained Biomechanical Three-Dimensional Maps
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2160
2165
.
10.
Kuo
,
P.-H.
, and
Deshpande
,
A. D.
,
2013
, “
Novel Design of a Passive Variable Stiffness Joint Mechanism: Inspiration From Biomechanics of Hand Joints
,”
Dynamic Systems and Control Conference
, Vol. 56130, p. V002T28A003.
11.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
12.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
.
13.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscipl. Optim.
,
19
(
1
), pp.
36
49
.
14.
Tan
,
U.-X.
,
Yang
,
B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Triaxial MRI-Compatible Fiber-Optic Force Sensor
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
65
74
.
15.
Ananthasuresh
,
G.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), p.
01101
.
16.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
17.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load–Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
18.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
.
19.
Cheng
,
Z.
,
Foong
,
S.
,
Sun
,
D.
, and
Tan
,
U.-X.
,
2014
, “
Algorithm for Design of Compliant Mechanisms for Torsional Applications
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, IEEE, pp.
628
633
.
20.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
.
21.
Li
,
Y.
,
Huang
,
X.
,
Xie
,
Y.
, and
Zhou
,
S.
,
2014
, “
Evolutionary Topology Optimization of Hinge-Free Compliant Mechanisms
,”
Int. J. Mech. Sci.
,
86
, pp.
69
75
.
22.
Zhang
,
J.
,
Guo
,
H.-W.
,
Wu
,
J.
,
Kou
,
Z. M.
and
Eriksson
,
A.
,
2022
, “
Design of Flexure Revolute Joint Based on Compliance and Stiffness Ellipsoids
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
236
(
4
), pp.
623
635
.
23.
Cheng
,
Z.
,
Foong
,
S.
,
Sun
,
D.
, and
Tan
,
U.-X.
,
2015
, “
Towards a Multi-DoF Passive Balancing Mechanism for Upper Limbs
,”
2015 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Singapore
,
Aug. 11–14
,
IEEE
, pp.
508
513
.
24.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
25.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
, Vol.
2
,
McGraw-Hill
,
New York
.
26.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
University of Michigan Press
,
Ann Arbor, MI
.
27.
Puangmali
,
P.
,
Althoefer
,
K.
,
Seneviratne
,
L. D.
,
Murphy
,
D.
, and
Dasgupta
,
P.
,
2008
, “
State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery
,”
IEEE Sens. J.
,
8
(
4
), pp.
371
381
.
28.
Kim
,
U.
,
Lee
,
D.-H.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2015
, “
Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1214
1224
.
29.
Lan
,
C.-C.
, and
Wang
,
J.-Y.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
IEEE
, pp.
386
391
.
30.
Haidegger
,
T.
,
2019
, “
Autonomy for Surgical Robots: Concepts and Paradigms
,”
IEEE Trans. Med. Rob. Bionics
,
1
(
2
), pp.
65
76
.
31.
Gilbertson
,
M. W.
, and
Anthony
,
B. W.
,
2015
, “
Force and Position Control System for Freehand Ultrasound
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
835
849
.
32.
Ihnatsenka
,
B.
, and
Boezaart
,
A. P.
,
2010
, “
Ultrasound: Basic Understanding and Learning the Language
,”
Int. J. Shoulder Surg.
,
4
(
3
), p.
55
.
You do not currently have access to this content.