Abstract

The kinetostatic and dynamic formulation of planar-compliant mechanisms is investigated by making use of the dynamic stiffness method based on Timoshenko beam theory. This research is prompted by the significance of considering both the shear deformation and rotary inertia for short and thick flexure beams widely used in compliant mechanisms. We investigate the problem by developing the frequency-dependent dynamic stiffness matrix with the pseudo-static characteristic for a threefold purpose. The first is to show that a closed-form dynamic stiffness matrix of flexure beams in power series of frequency including the shear deformation and rotary inertia is effective that is parameter-insightful and from a computational standpoint concise. Second, a programmable stiffness and mass assembling procedure is developed to build the kinetostatic and dynamic model for compliant mechanisms in a general sense. The third target is to accelerate the calculation efficiency of dynamic stiffness model by employing a linear solution strategy of natural frequencies which is beneficial for parameter optimization iteration. The presented approach is demonstrated by applying the parameter influence analysis and dimension synthesis of a bridge-type compliant mechanism widely used in micro-displacement and/or force amplifications

References

1.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
2.
Chen
,
S.
,
Wan
,
H.
,
Jiang
,
C.
,
Ye
,
L.
,
Yu
,
H.
,
Yang
,
M.
,
Zhang
,
C.
,
Yang
,
G.
, and
Wu
,
J.
,
2021
, “
Kinetostatic Modeling of Dual-Drive H-Type Gantry With Exchangeable Flexure Joints
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040909
.
3.
Li
,
S.
,
Hao
,
G.
,
Chen
,
Y.
,
Zhu
,
J.
, and
Berselli
,
G.
,
2022
, “
Nonlinear Analysis of a Class of Inversion-Based Compliant Cross-Spring Pivots
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031007
.
4.
Sun
,
X.
,
Wang
,
J.
,
Yi
,
S.
, and
Hu
,
W.
,
2022
, “
Design and Analysis of a Novel Piezoelectric Inertial Actuator With Large Stepping Displacement Amplified by Compliant Mechanism
,”
Microsyst. Technol.
,
28
(
4
), pp.
1025
1035
.
5.
Fang
,
J.
,
Zhao
,
J.
,
Zhang
,
L.
,
Li
,
C.
,
Zhong
,
W.
, and
Zhang
,
L.
,
2022
, “
Fuzzy Sliding Mode Control of Piezo-Driven Stage
,”
Rev. Sci. Instrum.
,
93
(
1
), p.
015011
.
6.
Song
,
S.
,
Yang
,
Y.
,
Fu
,
L.
,
Li
,
G.
, and
Wei
,
Y.
,
2022
, “
Design and Analysis of a Two-Degrees-of-Freedom Monolithic Compliant Piezoelectric Microgripper
,”
J. Intell. Mater. Syst. Struct.
,
33
(
17
), pp.
2176
2196
.
7.
Liu
,
P.
,
Qian
,
J.
,
Yan
,
P.
, and
Liu
,
Y.
,
2022
, “
Design, Analysis and Evaluation of a Self-lockable Constant-Force Compliant Gripper
,”
Sens. Actuators, A
,
335
(
3
), p.
113354
.
8.
Lin
,
S.
,
Wang
,
J.
,
Xiong
,
W.
,
Hu
,
Q.
,
Liu
,
H.
, and
Wang
,
Q.
,
2022
, “
Design and Modeling of a Curved Beam Compliant Mechanism With Six Degrees of Freedom
,”
Micromachines
,
13
(
2
), p.
208
.
9.
Liu
,
Y.
, and
Zhang
,
Z.
,
2022
, “
A Large Range Compliant Nano-Manipulator Supporting Electron Beam Lithography
,”
ASME J. Mech. Des.
,
144
(
4
), p.
043303
.
10.
Vaccaro
,
M. S.
,
2022
, “
On Geometrically Nonlinear Mechanics of Nanocomposite Beams
,”
Int. J. Eng. Sci.
,
173
(
3
), p.
103653
.
11.
Li
,
D.-F.
,
Bai
,
C.-G.
, and
Zhang
,
Z.-Q.
,
2022
, “
Bulk Metallic Glass Cantilever Beams: Outstanding at Large-Deflection Leformation and Their Application in Complaint Mechanisms
,”
J. Alloys Compd.
,
906
(
6
), p.
164335
.
12.
Xu
,
C.
,
Damle
,
T.
,
Bosworth
,
M.
,
Soto
,
D.
,
Agarwal
,
R.
,
Steurer
,
M.
, and
Graber
,
L.
,
2020
, “
Piezoelectrically Actuated Fast Mechanical Switch for MVDC Protection
,”
IEEE Trans. Power Deliv.
,
36
(
5
), pp.
2955
2964
.
13.
Ling
,
M.
,
Wang
,
J.
,
Wu
,
M.
,
Cao
,
L.
, and
Fu
,
B.
,
2021
, “
Design and Modeling of an Improved Bridge-Type Compliant Mechanism With Its Application for Hydraulic Piezo-valves
,”
Sens. Actuators, A
,
324
(
6
), p.
112687
.
14.
Guibert
,
M.
,
Oliver
,
C.
,
Durand
,
T.
,
Le Mogne
,
T.
,
Le Bot
,
A.
,
Dalmas
,
D.
,
Scheibert
,
J.
, and
Fontaine
,
J.
,
2021
, “
A Versatile Flexure-Based Six-Axis Force/Torque Densor and Its Application to Tribology
,”
Rev. Sci. Instrum.
,
92
(
8
), p.
085002
.
15.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
).
16.
Evans
,
M.
,
Tang
,
L.
,
Tao
,
K.
, and
Aw
,
K.
,
2019
, “
Design and Optimisation of an Underfloor Energy Harvesting System
,”
Sens. Actuators, A
,
285
(
1
), pp.
613
622
.
17.
Su
,
H. J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.
18.
Zhang
,
X.
, and
Zhu
,
B.
,
2018
,
Topology Optimization of Compliant Mechanisms
,
Springer
,
New York
.
19.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
Springer
,
London
, pp.
189
216
.
20.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
21.
Zentner
,
L.
, and
Linß
,
S.
,
2019
,
Compliant Systems
,
De Gruyter Oldenbourg
,
Berlin, Boston
.
22.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
).
23.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
(
1
), p.
103622
.
24.
Wang
,
M.
,
Ge
,
D.
,
Zhang
,
L.
, and
Herder
,
J. L.
,
2021
, “
Micro-scale Realization of Compliant Mechanisms: Manufacturing Processes and Constituent Materials—A Review
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
22
.
25.
Jagtap
,
S.
,
Deshmukh
,
B.
, and
Pardeshi
,
S.
,
2021
, “
Applications of Compliant Mechanism in Today’s World–A Review
,”
Journal of Physics: Conference Series, 1969(1), International Virtual Conference on Intelligent Robotics, Mechatronics and Automation Systems 2021 (IRMAS2021)
,
Chennai, India
,
Mar. 26–27
,
IOP Publishing
, p.
012013
.
26.
Li
,
N.
,
Su
,
H. J.
, and
Zhang
,
X. P.
,
2017
, “
Accuracy Assessment of Pseudo-Rigid-Body Model for Dynamic Analysis of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054503
.
27.
Chen
,
W.
,
Qu
,
J.
,
Chen
,
W.
, and
Zhang
,
J.
,
2017
, “
A Compliant Dual-Axis Gripper With Integrated Position and Force Sensing
,”
Mechatronics
,
47
(
8
), pp.
105
115
.
28.
Venkiteswaran
,
V. K.
, and
Su
,
H. J.
,
2016
, “
A Three-Spring Pseudo-Rigid-Body Model for Soft Joints With Significant Elongation Effects
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061001
.
29.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), pp.
317
337
.
30.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
31.
Lobontiu
,
N.
,
Cullin
,
M.
,
Ali
,
M.
, and
Brock
,
J. M.
,
2011
, “
A Generalized Analytical Compliance Model for Transversely Symmetric Three-Segment Flexure Hinges
,”
Rev. Sci. Instrum.
,
82
(
10
), p.
105116
.
32.
Meng
,
Q.
,
Li
,
Y.
, and
Xu
,
J.
,
2013
, “
New Empirical Stiffness Equations for Corner-Filleted Flexure Hinges
,”
Mech. Sci.
,
4
(
2
), pp.
345
356
.
33.
Dirksen
,
F.
, and
Lammering
,
R.
,
2011
, “
On Mechanical Properties of Planar Flexure Hinges of Compliant Mechanisms
,”
Mech. Sci.
,
2
(
1
), pp.
109
117
.
34.
Henning
,
S.
,
Linß
,
S.
, and
Zentner
,
L.
,
2018
, “
DetasFLEX–A Computational Design Tool for the Analysis of Various Notch Flexure Hinges Based on Non-Linear Modeling
,”
Mech. Sci.
,
9
(
2
), pp.
389
404
.
35.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
36.
Wu
,
J.
,
Cai
,
S.
,
Cui
,
J.
, and
Tan
,
J.
,
2015
, “
A Generalized Analytical Compliance Model for Cartwheel Flexure Hinges
,”
Rev. Sci. Instrum.
,
86
(
10
), p.
105003
.
37.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Design, Analysis and Simulation of a Novel 3-DOF Translational Micromanipulator Based on the PRB Model
,”
Mech. Mach. Theory
,
100
(
6
), pp.
235
258
.
38.
Zhu
,
S.-K.
, and
Yu
,
Y.-Q.
,
2017
, “
Pseudo-rigid-body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031005
.
39.
Wu
,
S.
,
Shao
,
Z.
,
Su
,
H.
, and
Fu
,
H.
,
2019
, “
An Energy-Based Approach for Kinetostatic Modeling of General Compliant Mechanisms
,”
Mech. Mach. Theory
,
142
(
12
), p.
103588
.
40.
Das
,
T. K.
,
Shirinzadeh
,
B.
,
Ghafarian
,
M.
, and
Al-Jodah
,
A.
,
2020
, “
Design, Analysis, and Experimental Investigation of a Single-Stage and Low Parasitic Motion Piezoelectric Actuated Microgripper
,”
Smart Mater. Struct.
,
29
(
4
), p.
045028
.
41.
Zheng
,
L.
,
Chen
,
W.
,
Huo
,
D.
, and
Lyu
,
X.
,
2020
, “
Design, Analysis, and Control of a Two-Dimensional Vibration Device for Vibration-Assisted Micromilling
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1510
1518
.
42.
Yang
,
X.
, and
Zhu
,
W.-L.
,
2019
, “
Design, Analysis, and Control of an XY Parallel Nanomanipulator With Multiple Actuation Modes
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7639
7648
.
43.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2018
, “
A Semi-analytical Modeling Method for the Static and Dynamic Analysis of Complex Compliant Mechanism
,”
Precis. Eng.
,
52
(
2
), pp.
64
72
.
44.
Al-Jodah
,
A.
,
Shirinzadeh
,
B.
,
Ghafarian
,
M.
,
Das
,
T. K.
,
Tian
,
Y.
,
Zhang
,
D.
, and
Wang
,
F.
,
2020
, “
Development and Control of a Large Range XYΘ Micropositioning Stage
,”
Mechatronics
,
66
(
3
), p.
102343
.
45.
Hussain
,
I.
,
Malvezzi
,
M.
,
Gan
,
D.
,
Iqbal
,
Z.
,
Seneviratne
,
L.
,
Prattichizzo
,
D.
, and
Renda
,
F.
,
2021
, “
Compliant Gripper Design, Prototyping, and Modeling Using Screw Theory Formulation
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
55
71
.
46.
Choi
,
S.
,
Han
,
S.
,
Han
,
Y.
, and
Thompson
,
B.
,
2007
, “
A Magnification Device for Precision Mechanisms Featuring Piezoactuators and Flexure Hinges: Design and Experimental Validation
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1184
1198
.
47.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Jiang
,
Z.
,
2018
, “
A Pseudo-static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051011
.
48.
Ling
,
M.
,
Song
,
D.
,
Zhang
,
X.
,
He
,
X.
,
Li
,
H.
,
Wu
,
M.
,
Cao
,
L.
, and
Lu
,
S.
,
2022
, “
Analysis and Design of Spatial Compliant Mechanisms Using a 3-D Dynamic Stiffness Model
,”
Mech. Mach. Theory
,
168
(
2
), p.
104581
.
49.
Banerjee
,
J. R.
,
2003
, “
Dynamic Stiffness Formulation and Its Application for a Combined Beam and a Two Degree-of-Freedom System
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
351
358
.
50.
Kosmatka
,
J. B.
,
1995
, “
An Improved Two-Node Finite Element for Stability and Natural Frequencies of Axial-Loaded Timoshenko Beams
,”
Comput. Struct.
,
57
(
1
), pp.
141
149
.
51.
Sadek
,
E. A.
,
1985
, “
On the Dynamics of Framed Structures
,”
Comput. Struct.
,
20
(
6
), pp.
1013
1019
.
52.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II
,”
Proceedings of the International Conference on Parallel Problem Solving From Nature
,
Springer
,
Berlin/Heidelberg
, vol. 1917, pp.
849
858
.
You do not currently have access to this content.